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Abstract

In this paper a numerical method for solving 'fuzzy differential inclusions' is considered. which is discussed in detail, more ever the extrapolation method for increasing the accuracy of the approximate solution is applied. The method is illustrated by solving some linear and nonlinear fuzzy initial value problems.
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1  Introduction

The topics of numerical methods for solving fuzzy differential equations have been rapidly growing in recent years. The concept of fuzzy derivative was first introduced by S. L. Chang, L.A. Zadeh in [4]. It was followed up by D. Dubois, H. Prade in [5], who defined and used the extension principle. Other methods have been discussed by M. L Puri, D. A. Ralescu in [6] and R. Goetschel, W. Voxman in [7]. The fuzzy differential equation and the initial value problem were regularly treated by O. Kaleva in [8] and [9], by S. Seikkala in [10],.... Recently Hüllermeier [12] suggested a different formulation of FIVP based on a family of differential inclusions at each 
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. The numerical methods for solving fuzzy differential equations are introduced in [1, 2, 3]. The paper is organized as follows: 

In section 2 some basic definitions and results on fuzzy numbers along with a definition of a fuzzy derivative, discussed by D. Vorobiev and S. Seikkala in [14] and Phil Diamond in [16], are given. In section 3, we define the problem which is a fuzzy initial value problem. The numerical method for fuzzy differential inclusions is discussed in section 4. And the extrapolation method is discussed in section 5. A proposed algorithm is illustrated by solving some examples in section 6 and conclusions are in section 7.

 

2  Preliminaries
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 Definition 2.1 The fuzzy number 
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 3  A fuzzy initial value problem
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 interpreted as a family of differential inclusions. Set 
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These sets are not in general convex; they are acyclic which are stronger than simply connected, [15]. 
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 4   Numerical method
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Theorem 4.1 Let 
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5  Extrapolation method

According to Hullermeier’s interpretation, we have
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Extrapolation is performed using the Aitken-Neville algorithm by building up a table of 

values: 
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A dependency graph of the values illustrates the relationship as follows: 
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 6  Examples

Example 6.1 Consider the FIVP in 
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which has the solution set 
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Now we obtain the reachable set and its approximation at 
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 in table (6.1). 

  Table 6.1. The distance between reachable set and its approximations
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Example 6.2 Consider the FIVP in 
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This is interpreted as a family of differential inclusions 
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which has the solution set 
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Now we obtain the reachable set and its approximation at 
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 in table (6.2). 
   Table 6.2. The distance between reachable set and its approximations
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5  Conclusion
In this paper first of all, we approximated fuzzy differential inclusions by Runge-kutta method of order 2, and then it was improved by extrapolation method. As a result, approximated reachable set by extrapolation method is better than Runge-kutta method of order 2.
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