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Abstract
In this paper, He’s variational iteration method (VIM) is used to obtain approximate analytical solutions of the Abelian differential equation. This method is based on Lagrange multipliers for identification of optimal values of parameters in a functional. Using this method creates a sequence which tends to the exact solution of problem. The method is capable of reducing the size of calculation and easily overcomes the difficulty of the perturbation technique or Adomian polynomials. The results reveal that VIM is very effective and simple.
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1  Introduction
Nonlinear phenomena are of fundamental importance in various fields of science and engineering. Analytical methods commonly used to nonlinear equations are very restricted and numerical techniques involving discretization of the variables on the other hand gives rise to rounding off errors. Analytical methods are such as the Adomian decomposition method (ADM), variational iteration method (VIM) [3-5, 9], homotopy analysis method (HAM) [12], homotopy perturbation method (HPM). The (VIM) is capable for solving a large class of linear and nonlinear differential equations without the tangible restriction of sensitivity to the degree of nonlinear term and also it reduces the size of calculations. We consider the Abelian differential equation of the type:
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 are given continuous, linear or nonlinear functions and c is a real finite constant. In the case of eq (1) reduces to the well known Riccati equation. The importance of this equation usually arises in the optimal control problems. 


2  Basic ideas of He’s variational iteration method

For the purpose of illustration of the methodology to the proposed method, using variational iteration method, we begin by considering a differential equation in the formal form,
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where 
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 is a linear operator, 
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 is a nonlinear operator and 
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 is an inhomogeneous term. Ji–Huan He has modified the above method into an iteration method. According to the variational iteration method, or more precisely, He’s variational iteration method [1, 6-8], we construct a correctional functional as follows:
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Where 
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 is a general Lagrange multiplier [2], which can be identified optimally via the variational theory, the subscript 
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 is considered as a restricted variation [9-10, 13], that is 
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So, we first determine the Lagrange multiplier 
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 that will be identified optimally via integration by parts. The successive approximations 
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 of the solution 
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 will be readily obtained upon using the obtained Lagrange multiplier and by using any selective function 
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3  Applications
In this section, we apply the variational iteration method for solving Abelian differential equation.
Example 3.1  
Consider the Abelian differential equation
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With the initial condition 
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Its correction functional can be written down as follows 
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Where 
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 is Lagrange multiplier, and can be identified optimally by the variational theory. Taking variation with respect to the independent variable 
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Yields the following stationary conditions:
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The Lagrange multiplier, therefore, can be obtained as
[image: image29.wmf]1
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, and following variational iteration formula can be obtained:
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Now we begin with an initial approximation:
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By the above variational iteration formula, we can obtain following other iterations:
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Other components are determined similarly.
Example 3.2
Consider the Abelian differential equation
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With the initial condition 
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Its correction functional can be written down as follows 
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Where 
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 is Lagrange multiplier, and can be identified optimally by the variational theory. Taking variation with respect to the independent variable 
[image: image41.wmf]n

y

, noticing that 
[image: image42.wmf]0

~

=

n

y

d



[image: image43.wmf]t

t

t

t

t

t

t

t

t

l

d

d

d

d

y

y

y

y

x

y

x

y

x

n

n

n

n

n

n

]

)

(

~

)

(

~

2

)

(

~

4

4

)

(

)[

(

)

(

)

(

0

3

2

2

1

ò

-

-

-

-

¢

+

=

+


           
[image: image44.wmf]ò

¢

+

=

t

n

n

d

y

x

y

0

)]

(

)[

(

)

(

t

t

t

l

d

d


           
[image: image45.wmf]t

t

d

t

l

d

t

l

d

d

y

x

y

x

y

n

x

n

n

)

(

)

(

)

(

)

(

)

(

0

ò

¢

-

+

=


Yields the following stationary conditions:
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The Lagrange multiplier, therefore, can be obtained as
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, and following variational iteration formula can be obtained:
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Now we begin with an initial approximation:
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By the above variational iteration formula, we can obtain following other iterations:
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Other components are determined similarly.

 Numerical results are shown, that the solutions of He’s variational iteration method are better than ADM [11].
4  Conclusions  
The variational iteration method is a powerful tool which is capable of handling linear/nonlinear partial differential equations. The method has been successfully applied to Abelian differential equation. This method does not require parameter in any equation as same as the perturbation approach. The results show that a correction functional can be easily constructed by a general Lagrange multiplier, and this multiplier can be optimally identified by variational theory. The application of restricted variations via correction functional makes it much easier to determine the multiplier. Matlab software has been used for computation in this article.
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