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Abstract

In this paper, we develop a framework to obtain approximate numerical solutions to ordi​nary differential equations (ODEs) involving fractional order derivatives using Legendre wavelets approximations. The continues Legendre wavelets constructed on [0, 1] are uti​lized as a basis in collocation method. Illustrative examples are included to demonstrate the validity and applicability of the technique. 
Keywords: Legendre Wavelet, Fractional Differential Equations, Collocation Method.
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1  Introduction
Ordinary differential equations involving fractional order derivatives are used to model a variety of systems, of which an important engineering application lies in viscoelastic damping [1, 8, 3]. Another important application of fractional derivatives lies in control theory [6]. Linear ODEs with fractional order derivatives or integrals are studied using Laplace [1] and Fourier transforms [8]. Nonlinear ODEs involving fractional order derivatives can be solved numerically using several method [9, 11]. 

In this paper, we present a numerical technique to solve ODEs with fractional order derivatives using legendre wavelet. There are many different types of deﬁnitions of fractional calculus. For example, the Riemann-Liouville integral operator [12] of order α is deﬁned by 
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and its fractional derivative of order α (α ≥ 0) is normally used:
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where 
[image: image5.wmf]n

is an integer. For Riemann-Liouvilles definition, one has 
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The Riemann-Liouville integral operator plays an important role in the development of the theory of fractional derivatives and integrals. However, it has some disadvantages for fractional differential equations with initial and boundary conditions. Therefore, we adopt here Caputo’s definition [3, 10], which is a modification of Rieman-Liouville definition: 
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where m is an integer. Caputo’s integral operator has a useful property [3, 10]: 
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where n is an integer. In this study, fractional differentiation is understood in the Caputo sense because of its applicability to real–world problems. Wavelets theory is a relatively new and an emerging area in mathematical research. It has been applied in a wide range of engineering disciplines; particularly, wavelets are very successfully used in signal analysis for waveform representations and segmentations, time–frequency analysis and fast algorithms for easy implementation [4]. Wavelets permit the accurate representation of a variety of functions and operators. Moreover, wavelets establish a connection with fast numerical algorithms [2].

 In the present article, we are concerned with the application of Legendre wavelets to the numerical solution of FODEs. The method consists of converting of ordinary differential equations involving fractional order to algebraic equations and expanding the solution by Legendre wavelets with unknown coefficients. The article is organized as follow: In Section 2, we describe the basic formulation of wavelets and Legendre wavelets required for our subsequent development. Section 3 is devoted to the solution of FODEs using integral operator matrix and product operator ma​trix and Legendre wavelets. In Section 4, considering numerical examples our numerical finding reported and the accuracy of the proposed scheme is demonstrate.
2   The Properties of Legendre wavelets 

2.1   Wavelets and Legendre wavelets 

Wavelets constitute a family of functions constructed from the dilation and translation of a single function called the mother wavelet. When the dilation parameter a and the translation parameter b vary continuously we have the following family of continuous wavelets as [7]: 
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If we restrict the parameters 
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and 
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to discrete values as 
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  and 
[image: image16.wmf]n

, and 
[image: image17.wmf]k

 positive integers, we have the following family of discrete wavelets: 
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Where 
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Legendre wavelets 
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 can assume any positive integer, 
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 is the order for Legendre polyno​mials and 
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 is the normalized time. They are defined on the interval    [0, 1) as follows: 
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Where 
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 which are defined on the interval [−1, 1], and can be determined with the aid of the following recurrence formulae: 
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2.2  Function approximation 
A function 
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denotes the inner product. If the infinite series in Eq. (8) is truncated, then Eq.(8) can be written as 
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3  Solution of fractional differential equations 
Consider the initial value problem given in Eq. (13). 
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 is fractional derivative. In order to use Leg​endre wavelets, we first approximate 
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we now collocate Eq. (16) at  
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We have chosen arbitrary collocation points. By solving equations system (17), we obtained solution for Eq.(13). 
4  Illustrative examples 
We applied the method presented in this paper and solved various examples: 
4.1 Example 1 

Now, let us consider the Bagley-Torvik equation that governs the motion of a rigid plate immersed in a Newtonian fluid [1]. 
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Following Diethelm and Ford [5]. We applied the method presented in this paper and solved Eq. (18) with 
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Now, we get:
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which is the exact solution. 
Example 4.2 

Next, following Momani and Odibat [11], we consider the composite fractional oscillation equation 
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with the initial conditions: 

We applied the method presented in this paper and solved Eq. (19) with 
[image: image82.wmf]3

=

M

and 
[image: image83.wmf]2

=

K

 For this equation we find: 

[image: image84.wmf]0

,

1

c

=0.0589256,
[image: image85.wmf]1

,

1

c

 =0.051031,
[image: image86.wmf]2

,

1

c

 =0.0131762 


[image: image87.wmf]0

,

2

c

=0.412479,
[image: image88.wmf]1

,

2

c

 =0.153093,
[image: image89.wmf]2

,

2

c

 =0.0131762 
Now, we get: 
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which is the exact solution. 

5 Conclusions 
In this work, we solved fractional differential equations by using Legendre wavelets in Collocation method. Legendre wavelets are well behaved basic functions that are orthonor​mal on [0, 1]. Application of the wavelets allows the creation of more effective and faster algorithms than the ordinary ones. Illustrative examples are included to demonstrate the validity and applicability of the technique. 
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