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Abstract

Return-To-Scale (RTS) is a most important topic in DEA. Many methods are not obtained for estimating RTS in DEA, yet. In this paper has developed the Banker-Trall approach to identify situation for RTS for the BCC model "multiplier form" with virtual weight restrictions that are imposed to model by DM judgments. Imposing weight restrictions to DEA models often has created problem of infeasibility the DEA models. Thus, the proposed models via Estellita Lins et al. (2006) are applied for testing feasibility weighted BCC model and to provide minimally acceptable adjustments to original restrictions that render the weighted model feasible.
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1 Introduction

 Data envelopment analysis (DEA) is a nonparametric technique for measuring and evaluating the relative efficiencies of decision making units (DMU) with multiple inputs and multiple outputs. The flexibility of weight assigned to inputs and outputs is a key aspect of DAE modeling. The different approach for the restricting weight flexibility in the DEA models by incorporating the dicision makers assessment on the relative important of inputs and outputs. As we know Return to Scale (RTS) one of the most important topic in DEA. Therefore determining the RTS status (Constant, Increasing, decreasing Return to Scale) under weight restrictions is very important. Imposing weight restriction to DAE models often led to the model infeasible. The topic of interaction of limits on weights and effect of these limits on feasibility was first observed by Pedraja-Capparo [3]. The weight restrictions can be imposed to DEA models with several approaches. The use of weight restrictions was first proposed by Thompson et al [5]. Wong and Beasley (1990) proposed three different approaches for restricting the virtual variables [6]. The one of this approaches consist of imposing upper and/or lower bounds on the share of virtual inputs (or outputs) in the total virtual input (or output). Also, Estellita Lins et al. 
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(2006) proposed the models for avoiding infeasibility of DEA models with virtual weight restrictions [2]. In this paper Banker-Trall theorem [1] applied for estimating RTS for the input-oriented BCC model with virtual weight restriction, using proposed model via Estellita Lins et al, for avoiding infeasibility model. 

The paper is structure as fallows, section 2 contains a BCC model, weighted BCC model and an existence theorem establishing conditions under which the restricted weight problem is infeasible and also  introduces a model to test infeasibility and also a model to avoiding infeasibility and reviews Banker - Trall theorem to identify situation RTS. In section 4 an algorithm is proposed for estimating RTS under virtual inputs weight restrictions, and determining the occurrence of infeasibility and avoiding infeasibility. Section 4 develops a numerical example that illustrate, imposing weight restrictions to model, status of RTS (CRS, IRS, DRS) may suffer a change.

2  Background

2.1   The BCC model

Suppose that, we have 
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  (Dicision Making Units), where each 
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The BCC model as introduced in Banker et al (1984) for evaluation efficiency of a specific 
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  is presented as follows

[image: image133.emf]1


01


0


0


T


oo


T


o


T


oo


MaxYvu


s.tXv


XvYuu()


u,


v,


+


=


-++£


³


³




10100TooToTooMaxYvus.tXvXvYuu()u,v,


[image: image134.wmf]1

01

0

0

T

oo

T

o

T

oo

MaxYvu

s.tXv

XvYuu()

u,

v,

+

=

-++£

³

³


[image: image135.wmf]111

1

111

1

06

0

m

iijj

i

m

jiij

i

lvxvx,iI()

vxuvxiI

*

=

*

=

-£Î

-£Î

å

å


In above formulation  
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 are multiplier imputed output and input, respectively. The dual (Envelopment Form) of represented model (1) is obtained from the same data are then used in following form
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Where, the 
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2.2   Weighted BCC model

Consider the following linear programming problem
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As can be seen, this model is the same as the model (1) except for the fact that p restrictions 
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  to the input weights is added, where 
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is 
[image: image22.wmf]m

p

´

 matrix, 
[image: image23.wmf]*

i

A

 indicates row 
[image: image24.wmf]i

of 
[image: image25.wmf]A

and 
[image: image26.wmf]j

A

*

 indicates columns 
[image: image27.wmf]j

 of 
[image: image28.wmf]A

.

The dual (Envelopment Form) of   model (3) is
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Where, 
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 is dual variable corresponding to contain (3.1).

Estellita Lins et al (2006)[2], using relationship between primal and dual have provided a theorem that establishes feasibility conditions for DEA model with weight restrictions in the  form of  
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  as follows

Theorem 2.1  (weight restrictions feasibility theorem)

    The multiplier form of BCC model with weight restrictions in the form of 
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 is feasible, if and only if, there is no linear combination of rows of 
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Now, suppose that weight restrictions 
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 are imposed to model(1) by DM. Estellita Lins et al (2006) have proposed a linear model that tests feasibility or infeasibility  the weighted model as fallows


     

Where 
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 is an infinitesimal positive amount, If the optimal solution of this linear program yields 
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, and according to Theorem 2.1, model (3) is infeasible. Otherwise, model (3) is feasible.

2.3   Imposing weight restrictions to virtual variables

Assume that, 
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 demonstrate virtual input 
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And can be written as 

   

 By imposing 
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 restrictions to virtual inputs, we have 
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2.4  Hyper plane adjusting model

Suppose that, model (5) declares model (1) with (6) infeasible. Estellita Lins et al (2006) proposed a nonlinear  model that provide minimally acceptable adjustments to the original restrictions that render the weighted BCC model feasible, is presented as follows,
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In above model
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2.5   Return to scale 

Banker and Trall (1992)[1], prove the following theorem to estimate return to scale (RTS), using the sign 
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Theorem 2.2  The fallowing conditions estimate RTS for the BCC model given in (1).

 i) Increasing RTS prevail at 
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iii) Constant RTS prevail at
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Where, the symbol "*" denotes an optimal value which is obtained from (2) the evaluation of
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3  Weighted BCC model and estimation of RTS

The following algorithm is provided to estimate return to scale for the weighted BCC model. Consider model (1) in section (2) for the evaluation of 
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Phase 1  Substitute the following constant for the given definitions
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By imposing lower and upper bounds to virtual inputs 
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, we obtain (6). As discussed, adding weight restrictions to DEA models, often led to the model infeasibility. Thus, before imposing restriction (6) to (1), we need to go to phase 2.

Phase 2  In this step, we apply model (5) to test feasibility or infeasibility of the model (1) under weight restrictions (6). By applying model (5) one of the following conditions will occur,

a  The model declares that model (1) with virtual weight restrictions (6), is feasible.      

Now, by imposing (6) to (1), and assuming that 
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Now, if 
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obtained from (9) is zero, then according to part of (iii) of Theorem 2.2, RTS are constant. Otherwise 
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3 If 
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and condition (i) is applicable and RTS are increasing. 

b The model to test feasibility (5), declares that the multiplier model (1) with restrictions (6) is infeasible. Therefore, the following stage will be applied to determine the situations for RTS.

Stage 1  

     We apply the hyper plane adjusting model (7) to find the minimally acceptable adjustments of original weight restrictions of (8). Then, by using the optimal solution of (7), we obtain the new bounds that render the model feasible. And we go to stage 2.

Stage 2 
     We return to condition (a) of phase 2. 

By running the process above, RTS for 
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  can be determined replacing initial bounds with new bound. 

4  Numerical Example

The propose of the following example is to illustrate effects weight restrictions that are proposed by DM on status RTS (CRS, DRS, IRS). Consider the values in Table 1, where two inputs and one output are given for six DMU. 

	Table 1. Value of inputs and outputs in the example
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	inputs
	outputs
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	1
	
	7
	1
	10

	2
	
	2
	8
	12

	3
	
	7
	8
	17

	4
	
	3
	3
	5

	5
	
	14
	13
	8

	6
	
	4.5
	4.5
	11


By consultation to the DM we impose bounds considered acceptable for the contribution of each virtual input to the total virtual input. These bounds appear in Table 2.

	Table 2. Initial bounds on virtual inputs

	bounds
	
	Input1
	               Input 2
	

	lower
	
	0.1
	0.5
	

	upper
	
	0.2
	0.7
	


The test feasibility model (5) declares that imposition additional restrictions to model (1) turn it infeasible. Thus hyper plane adjusting model (7) is implemented to find new feasible bounds. The new bounds appear in two rows of Table 3.

	Table 3. New bounds on virtual inputs

	bounds
	
	        Input1
	                Input 2
	

	lower
	
	        0.02
	0.5
	

	upper
	
	        0.5
	0.98
	


Now, advantage of estimating RTS without weight restrictions and with weight restrictions are illustrated in Table 4. 
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w.BCC

are the objective function values for model (1) and model (3), respectively.
	Table 4. Score and RTS for BCC model and weighted BCC model

	
	RTS  for BCC model
	RTS  for weighted  BCC model
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	1
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	CRS
	DRS
	1
	0.4827
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	IRS
	CRS
	1
	0.5833
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	IRS
	CRS
	0.2769
	0.1333
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	CRS
	DRS
	1
	0.583


With comparing results displayed in Tables 3 and 4, although upper bound of input 2 is very close to 1 and also lower bound of input 1 is very close to 0, only 
[image: image124.wmf]1

DMU

 and 
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 which respectively were CRS and DRS has remained unchanged by imposing weight restrictions. But by imposing weight restrictions to model 
[image: image126.wmf]4

DMU

and
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  which were both IRS, and also
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 and
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 were both CRS changed in to CRS and DRS, respectively.

5 Conclusions
Data envelopment analysis (DEA) has been proposed in this paper for estimating return to scale (RTS) under weight restrictions, using Banker- Trall approach [1]. As we know weight restricted DEA models frequently encounter problem of infeasibility. The proposed algorithm in this paper identifies RTS under weight restrictions that are proposed by DM judgments, as well as determining the occurrence of infeasibility and avoiding infeasibility [2]. In section 2 we recommend the virtual inputs and then introduce the model test to feasibility and the hyper plane adjusting model via Estellita et al. (2006) and review banker- Trall approach. In section 3 we proposed an algorithm for estimating RTS for the BCC model with virtual weight restrictions and in section 4 the numerical example provided for representing that By addition of weight restrictions, status of RTS (CRS, IRS, DRS) may suffer a change.
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