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Abstract

In this paper, a two-dimensional multi-wavelet is constructed in terms of Chebyshev polynomials. The constructed multi-wavelet is an orthonormal basis for 
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space. By discretizing two-dimensional Fredholm integral equation reduce to a algebraic system. The obtained system is solved by the Galerkin method in the subspace of  by using two-dimensional multi-wavelet bases. Because the bases of subspaces are orthonormal, so the above mentioned system has a small dimension and also high accuracy in approximating solution of integral equations. For one-dimensional case, a similar works are done in [4, 5], which they have small dimension and high accuracy. In this article, we extend one-dimensional case to two-dimensional by extending and by choosing good functions on two axes. Numerical results show that the above mentioned method has a good accuracy.
Keywords: Two-Dimensional, Multi-Wavelet, Integral Equations, Galerkin, Chebyshev.

1  Introduction

By reviewing the works in [1, 4, 5], Alpert [1], constructed a class of bases for 
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by using Legendre polynomials and he used the multi-resolution analysis (MRA) that was used in [3, 6, 7]. The authors in [4, 5], constructed a class of bases for 
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 by using Chebyshev polynomials in the one-dimensional case and used the constructed one-dimensional orthonormal multi-wavelet bases for solving integral equations and integro-differential equations.

In this article, multi-wavelet bases will be extended to two-dimensional case. For this purpose it can be reviewed in the following form (see [4, 5]):

The Chebyshev orthonormal polynomials in 
[image: image5.wmf][0,1]

 are


[image: image6.wmf]{

}

232

432

1222

,(21),(881),(3248181),

2

(128256160321),....

tttttt

tttt

pppp

p

--+-+-

-+-+
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Suppose that 
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First consider the space 
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In other words, 
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 is piecewise polynomial that is zero outside 
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and is orthogonal to polynomials with lower degree and the dimension of 
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 So the following formula holds:
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Similarly, the basis elements of 
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with scaling and translating, where 
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 In this order we obtain the following nested subspaces:
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The above process leads to
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For obtaining 
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 the following algorithm is used.
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Note that the first case is a linear combination of polynomials with degree less than 
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 over 
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and the second case is the extension of the first case (as an odd or even function) in 
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3. Apply the vanishing moments condition:
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By using the above steps for 
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where 
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with 
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where 
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The above bases are orthonormal for  
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2  Constructing the Two-Dimensional Multi-Wavelet Bases

By considering (1.4) for 
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space, for obtaining two-dimensional orthonormal bases in 
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 is chosen in terms of t on horizontal axis and in terms of s on vertical axis. Also for every subinterval of 
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On the right side of (10), first 
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Similar to the case of one-dimensional statement, like as (5), we have
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where each of 
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[image: image91.wmf]0,1

mk

³³

.

Now, some of 
[image: image92.wmf],2

k

m

v

 spaces are introduced


[image: image93.wmf]{

}

,222

00012

12

2(1)

12

(),()(21)

12

(),()(21)

(,)()();1,2,1,2

1222

,(21),(21),(21)(21)

k

ijij

vvvLinearSpanTtTtt

LinearSpanTsTss

LinearSpanbtsTtTsij

LinearSpanstts

pp

pp

pppp

-+

ìü

ïï

=´===-´

íý

ïï

îþ

ìü

ïï

==-

íý

ïï

îþ

====

ì

ï

=----

í

ï

î

.

ü

ï

ý

ï

þ


   (12)
Basis of  
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Basis of  
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 space is orthonormal with the weight function given in (12).
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Generally for 
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where 
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3  Solving the Two-Dimensional Integral Equation

For solving integral equations in the one-dimensional case, see [4, 5], and similar works are in [2, 7]. In this section, consider the two-dimensional integral equation with the following form:
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where 
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By multiplying both sides of (19) by 
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The matrix form of the above mentioned system is the following form:
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The integrals of the (22) and (23) are easily computable, because the bases of 
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spaces are orthonormal.

4  Numerical Examples

In this section the above mentioned method is used for solving some two-dimensional integral equations.

Example 4.1 
In this example, we solve
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with the exact solution 
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The numerical results are presented in Table 1, where 
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Table1. Numerical results for example 1
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Example 4.2  
 In this example, we solve
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Table2. Numerical results for example 2.
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Conclusion

In this paper, the two-dimensional orthonormal multi-wavelet bases are constructed in terms of Chebyshev polynomials and by using the above mentioned bases, we solved Fredholm two-dimensional integral equations.

Also computations are reduced because of orthonormality, and so the final system produced from discretizing the integral equations has a small dimension and enough precision.
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