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Abstract

The main purpose of this paper is to find fuzzy root of fuzzy polynomials (if exists) by using Newton-Raphson method. The proposed numerical method has capability to solve fuzzy polynomials as well as algebric ones. For this purpose, by using parametric form of fuzzy coefficients of fuzzy polynomial and Newton-Rphson method we can find its fuzzy roots.

Finally, we illustrate our approach by numerical examples.
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1  Introduction
Polynomials play a major role in various areas such as pure and applied mathematics, engineering and social sciences. In this paper we propose to find fuzzy roots of a fuzzy polynomial like 
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  (if exists). The set of all the fuzzy numbers is denoted by
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E

. The applications of fuzzy polynomials are considered by [1].

The concept of fuzzy numbers and arithmetic operation with this numbers were first introduced by Zadeh, [2]. Many researchers have studied on solution methods of fuzzy polynomials. Buckley and Eslami, [3] considered neural net solutions to fuzzy problems. Otadi [4, 5] proposed architecture of fuzzy neural networks with crisp weights for fuzzy input vector and fuzzy target. Abasbandy and Asady, [6] considered Newton’s method for solving fuzzy nonlinear equations. Linear and nonlinear fuzzy equations are solved by [5, 6, 7, 8, 9, 10]. In this paper we want to solve fuzzy polynomials with fuzzy coefficients and fuzzy variable, numerically. The fuzzy quantities are presented in parametric form. We first convert the polynomial fuzzy coefficients into parametric form then apply Newton method on each limit. Finally, in order to finding root, which is also fuzzy number/point, we numerically calculate level sets (i.e.,
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-cuts) of fuzzy coefficients on each limits. (Note that fuzzy polynomials may have no root).
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In this paper the algorithm is illustrated by solving several numerical examples in last section.
2  Preliminaries

A popular fuzzy number is the triangular fuzzy number
[image: image6.wmf]U(m,,)

ab

=

for 
[image: image7.wmf]0

,

0

>

>

b

a

with membership function 
  
[image: image8.wmf]ï

ï

ï

î

ï

ï

ï

í

ì

+

£

£

+

-

£

£

-

+

-

=

.

,

0

,

,

1

,

,

1

)

(

otherwise

m

x

m

x

m

m

x

m

m

x

x

u

b

b

a

a

m


Its parametric form is     
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An arbitrary fuzzy number is represented by an ordered pair of function 
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Let 
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be the set of all upper semi continuous normal convex fuzzy numbers with bounded 
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. Since level sets of fuzzy numbers become closed intervals, we denote 
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2.1 Interval arithmetic
Let A and B be fuzzy numbers with 
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In general case, we obtain a very complicated expression for 
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-level sets of the product and division.
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Definition 2.1 (see[11] ).   Consider 
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Definition 2.3    The supremum metric 
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Theorem 2.1 (see [11]) let 
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2)  If is differentiable in the second form (ii), then  
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3 Fuzzy polynomials
As mentioned before we are interested in finding solution of 
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  From (3), we obtain 
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Now, by applying Newton’s formula we have
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By applying Newton's method for parametric Eqs (3) with initial points 
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3.1 Convergence of method

We are computing a sequence of iteration
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By considering (6) and Taylor’s theorem we have
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From (6), (7), we obtain following result
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This formula says that the error in 
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and method has at least second degree convergence. And if 
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That means, when the initial error is sufficiently small, the error in the succeeding iterates will decrease very rapidly.

 Proof of Newton’s method convergence is [13].

Since both upper limit and lower limit of fuzzy polynomial satisfies in Newton’s method theorem we can say by starting from arbitrary initial point, sequence of iteration 
[image: image164.wmf]n

x

 will be convergent to the root of polynomial (if exists).

4 Numerical examples

Example 4.1 

Consider the following fuzzy polynomial:
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The exact solution is 
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Example 4.2 

Consider the following fuzzy polynomial: 
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With the exact solution x=-1. 
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The initial point is 
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and n=5. We have fuzzy point 1 with e
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4 Conclusions
In this paper, we considered to fined root of fuzzy polynomial and saw we can get the solution in initial steps with almost high accuracy
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