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Abstract

In this paper, an extension of Differential Transformation Method (DTM) which is an analytical-numerical method for solving the fuzzy partial differential equation (FPDE) by using the strongly generalized differentiability concept is investigated. The proposed algorithm is illustrated by numerical example. 
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1  Introduction

Proper design for engineering applications requires detailed information of the system-property distributions such as temperature, velocity, density, etc., in the space and time domain. This information can be obtained by either experimental measurement or computational simulation. Although experimental measurement is reliable, it needs a lot of effort and time. Therefore, the computational simulation has become a more and more popular method as a design tool since it needs only a fast computer with a large memory. Frequently, those engineering design problems deal with a set of partial differential equations(PDEs), which are to be numerically solved such as heat transfor, solid and fluid mechanics. Numerical methods are widely applied over pre-assigned grid points to solve partial differential equations [14]. When a physical problem is transformed into a deterministic parabolic partial differential equation, we cannot usually be sure that this modeling is perfect. Also, the initial and boundary value may not be known exactly. If the nature of errors is random, then instead of a deterministic problem, we get a random partial differential equation with random initial and boundary values. But if the underlying structure is not probabilistic, e.g. because of subjective choice then it may be appropriate to use fuzzy numbers instead of real random variables. The concept of fuzzy derivative was first introduced by Chang and Zadeh [11], and it was followed up by Dobois and Prade [15], who used the extension principle in their approach. 



Other methods have been discussed by Puri and Ralescu [25] and by Goetschel and Voxman [18], and strongly generalized differentiability was introduced by Bede in [7, 9] and studied in [8].The notion of fuzzy differential equation was initially introduced by Kandel and Byatt and later applied in fuzzy processes and fuzzy dynamical systems. A thorough theoretical research of fuzzy Cauchy problems was given by Kaleva [21], Seikkala [26], Ouyang and Wu [20], and Wu [23]. A generalization of a fuzzy differential equation was given by Aubin, Baidosov, Leland and Colombo and Krivan. The numerical method for solving fuzzy differential equations are introduced in [1, 2, 22, 12]. Fuzzy partial differential equations were formulated by Buckly [10], and T. Allahviranloo [3] used a numerical method to solve the (FPDE).

In this paper, we are going to solve (FPDE)s by differential transformation method (DTM). Intrinsically, differential transformation method evaluates the approximating solution by the finite Taylor series. The differential transformation method does not evaluate the derivative symbolically; instead, it calculates the relative derivatives by an iteration procedure described by the transformed equations obtained from the original equations using differential transformation. The concept of differential transformation was first proposed by Zhou [27] and it was applied to solve linear and nonlinear initial value problems in electric circuit analysis. The proposed method provides the Taylor's series expansion solution for the domain between any adjacent grid points. During the last 5 years, significant progress has been made in applications of the differential transformation approach for some linear and nonlinear initial value problems. In 1999, Chen and Ho [13] introduced two-dimensional differential transformation and applied it for solving partial differential equations. Jang et al. [19] introduced the concept of the differential transformation of fixed grid size and adaptive grid size mechanism to approximate solutions of initial-value problems. The rest of paper is organized as follows:

Section 2 contains the basic material to be used in the paper. In section 3, the fuzzy partial differential equations by using the strongly generalized differentiability concept [8] is defined.One and two dimensional DTM are introduced in Section 4. Fainally a numerical example is presented for illustration.

2 Preliminaries

 We now recall some definitions needed through the paper. The basic definition of fuzzy numbers is given in [15, 17].
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It is clear that the 
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According to Zadeh
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From this characteristic of fuzzy numbers, we see that a fuzzy number is determined by the endpoints of the intervals 
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 It is well-known that the H-derivative (differentiability in the sense of Hukuhara)for fuzzy mappings was initially introduced by Puri and Ralescu([25]) and it is based in the H-difference of sets, as follows. 
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Now , by definition 2.4, we can simplify UT-function and LT-function.
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equations (14), (15) imply that the concept of two-dimensional differential transform is derived from two-dimensional Taylor series expansion. In real applications, the fuzzy function 
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it can be easily proven that the transformation function has basic mathematical operations shown in Table 1.
Table 1.
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5  The two-dimensional transformation solved problems
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 or 
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 Taking the differential of (17), it can be obtained that
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 From the initial conditions 
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the corresponding spectra can be obtained as follows: 
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 and from initial conditions, they can be obtained that 
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 Substituting (20) and (21) to (19), all spectra can be obtained as
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Therefore, the closed form solutions can be obtained as 
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6  Conclusion

In this paper, we proposed a analytical-numerical method (FPDE-DTM) for solving a fuzzy partial differential equation equation. This method is based on the definition of strongly generalized differentiability.
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