دانشگاه آزاد اسلامی واحد لاهیجان
Journal of Operational Research In Its Applications ( Applied Mathematics ) - Lahijan Azad University
2251-7286
2251-9807
7
4
2011
1
1
Solving Fuzzy Partial Differential Equation by Differential Transformation Method
1
16
EN
N. A. Kiani
Y
<meta content="text/html charset=utf-8" http-equiv="Content-Type" ><meta content="Word.Document" name="ProgId" ><meta content="Microsoft Word 11" name="Generator" ><meta content="Microsoft Word 11" name="Originator" ><link href="file:///C:DOCUME~1ADMINI~1LOCALS~1Tempmsohtml14clip_filelist.xml" rel="File-List" >
Normal
0
false
false
false
MicrosoftInternetExplorer4
/* Style Definitions */
table.MsoNormalTable
{mso-style-name:"Table Normal"
mso-tstyle-rowband-size:0
mso-tstyle-colband-size:0
mso-style-noshow:yes
mso-style-parent:""
mso-padding-alt:0cm 5.4pt 0cm 5.4pt
mso-para-margin:0cm
mso-para-margin-bottom:.0001pt
mso-pagination:widow-orphan
font-size:10.0pt
font-family:"Times New Roman"
mso-ansi-language:#0400
mso-fareast-language:#0400
mso-bidi-language:#0400}
In this paper, an extension of Differential
Transformation Method (DTM) which is an analytical-numerical method for solving
the fuzzy partial differential equation (FPDE) by using the strongly
generalized differentiability concept is investigated. The proposed algorithm
is illustrated by numerical example.
Fuzzy-Number, Fuzzy-Valued Function, Generalized Differentiability, Fuzzy Partial Differential Equation, Differential Transformation Method
http://jamlu.liau.ac.ir/article-1-178-en.html
http://jamlu.liau.ac.ir/article-1-178-en.doc
دانشگاه آزاد اسلامی واحد لاهیجان
Journal of Operational Research In Its Applications ( Applied Mathematics ) - Lahijan Azad University
2251-7286
2251-9807
7
4
2011
1
1
Numerical Solution of Fuzzy Polynomials by Newton-Raphson Method
17
23
EN
T. Allahviranloo
Y
S. Asari
N
The main purpose of this paper is to find fuzzy root of fuzzy polynomials (if exists) by using Newton-Raphson method. The proposed numerical method has capability to solve fuzzy polynomials as well as algebric ones. For this purpose, by using parametric form of fuzzy coefficients of fuzzy polynomial and Newton-Rphson method we can find its fuzzy roots.
Finally, we illustrate our approach by numerical examples
http://jamlu.liau.ac.ir/article-1-179-en.html
http://jamlu.liau.ac.ir/article-1-179-en.doc
دانشگاه آزاد اسلامی واحد لاهیجان
Journal of Operational Research In Its Applications ( Applied Mathematics ) - Lahijan Azad University
2251-7286
2251-9807
7
4
2011
1
1
Solving Linear Fred Holm Fuzzy Integral Equations of the Second Kind by Modified Trapezoidal Method
25
37
EN
T. Allahviranloo
Y
N. Khalilzadeh
N
S. Khezerloo
N
One of the methods for solving definite integrals is modified trapezoid method, which is obtained by using Hermitian interpolation (see e.g. [12]). In this article, we have used modified trapezoid quadrature method and Generalized differential to solve the Fredholm fuzzy integral equations of the second kind. This method leads to solve fuzzy linear system. Finally the proposed method is illustrated by solving some numerical examples.
Keywords: Modified Trapezoid Method, Fuzzy Linear System, Generalized Differential.
http://jamlu.liau.ac.ir/article-1-180-en.html
http://jamlu.liau.ac.ir/article-1-180-en.doc
دانشگاه آزاد اسلامی واحد لاهیجان
Journal of Operational Research In Its Applications ( Applied Mathematics ) - Lahijan Azad University
2251-7286
2251-9807
7
4
2011
1
1
Homotopy Perturbation Method for the Generalized Fisher’s Equation
39
44
EN
More recently, Wazwaz [An analytic study of Fisher’s equation by using Adomian decomposition method, Appl. Math. Comput. 154 (2004) 609–620] employed the Adomian decomposition method (ADM) to obtain exact solutions to Fisher’s equation and to a nonlinear diffusion equation of the Fisher type. In this paper, He’s homotopy perturbation method is employed for the generalized Fisher’s equation to overcome the difficulty arising in calculating Adomian polynomials.
Homotopy Perturbation Method, Generalized Fisher’s Equation.
http://jamlu.liau.ac.ir/article-1-181-en.html
http://jamlu.liau.ac.ir/article-1-181-en.doc
دانشگاه آزاد اسلامی واحد لاهیجان
Journal of Operational Research In Its Applications ( Applied Mathematics ) - Lahijan Azad University
2251-7286
2251-9807
7
4
2011
1
1
Constructing Two-Dimensional Multi-Wavelet for Solving Two-Dimensional Fredholm Integral Equations
45
54
EN
M. Rabbani
Y
In this paper, a two-dimensional multi-wavelet is constructed in terms of Chebyshev polynomials. The constructed multi-wavelet is an orthonormal basis for space. By discretizing two-dimensional Fredholm integral equation reduce to a algebraic system. The obtained system is solved by the Galerkin method in the subspace of by using two-dimensional multi-wavelet bases. Because the bases of subspaces are orthonormal, so the above mentioned system has a small dimension and also high accuracy in approximating solution of integral equations. For one-dimensional case, a similar works are done in [4, 5], which they have small dimension and high accuracy. In this article, we extend one-dimensional case to two-dimensional by extending and by choosing good functions on two axes. Numerical results show that the above mentioned method has a good accuracy.
Two-Dimensional, Multi-Wavelet, Integral Equations, Galerkin, Chebyshev
http://jamlu.liau.ac.ir/article-1-182-en.html
http://jamlu.liau.ac.ir/article-1-182-en.doc
دانشگاه آزاد اسلامی واحد لاهیجان
Journal of Operational Research In Its Applications ( Applied Mathematics ) - Lahijan Azad University
2251-7286
2251-9807
7
4
2011
1
1
Estimation of Return to Scale under Weight Restrictions in Data Envelopment Analysis
55
63
EN
F. Rezai Balf
Y
R. Shahverdi
N
H. Moienalsadat
N
Return-To-Scale (RTS) is a most important topic in DEA. Many methods are not obtained for estimating RTS in DEA, yet. In this paper has developed the Banker-Trall approach to identify situation for RTS for the BCC model "multiplier form" with virtual weight restrictions that are imposed to model by DM judgments. Imposing weight restrictions to DEA models often has created problem of infeasibility the DEA models. Thus, the proposed models via Estellita Lins et al. (2006) are applied for testing feasibility weighted BCC model and to provide minimally acceptable adjustments to original restrictions that render the weighted model feasible.
DEA, RTS, Infeasibility, Weight Restrictions
http://jamlu.liau.ac.ir/article-1-183-en.html
http://jamlu.liau.ac.ir/article-1-183-en.doc
دانشگاه آزاد اسلامی واحد لاهیجان
Journal of Operational Research In Its Applications ( Applied Mathematics ) - Lahijan Azad University
2251-7286
2251-9807
7
4
2011
1
1
Legendre Wavelets for Solving Fractional Differential Equations
65
70
EN
M. Soleymanivaraki
Y
Hossein Jafari
N
M. Arab.Firoozjaee
N
In this paper, we develop a framework to obtain approximate numerical solutions to ordinary differential equations (ODEs) involving fractional order derivatives using Legendre wavelets approximations. The continues Legendre wavelets constructed on [0, 1] are utilized as a basis in collocation method. Illustrative examples are included to demonstrate the validity and applicability of the technique.
Legendre Wavelet, Fractional Differential Equations, Collocation Method
http://jamlu.liau.ac.ir/article-1-184-en.html
http://jamlu.liau.ac.ir/article-1-184-en.doc
دانشگاه آزاد اسلامی واحد لاهیجان
Journal of Operational Research In Its Applications ( Applied Mathematics ) - Lahijan Azad University
2251-7286
2251-9807
7
4
2011
1
1
Application of He’s Variational Iteration Method to Abelian Differential Equation
71
75
EN
M. Matinfar
Y
Jafar-Nodeh
N
In this paper, He’s variational iteration method (VIM) is used to obtain approximate analytical solutions of the Abelian differential equation. This method is based on Lagrange multipliers for identification of optimal values of parameters in a functional. Using this method creates a sequence which tends to the exact solution of problem. The method is capable of reducing the size of calculation and easily overcomes the difficulty of the perturbation technique or Adomian polynomials. The results reveal that VIM is very effective and simple.
Variational Iteration Method, Abelian Differential Equation, General Lagrange Multiplier, Correction Functional.
http://jamlu.liau.ac.ir/article-1-185-en.html
http://jamlu.liau.ac.ir/article-1-185-en.doc