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Abstract

In this paper, the fractional Sturm-Liouville problems, in which the second order derivative is replaced by a fractional derivative, are derived by the Homotopy perturbation method. The fractional derivatives are described in the Caputo sense. The present results can be implemented on the numerical solutions of the fractional diffusion-wave equations. Numerical results show that HPM is effective and simple numerical method.
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1  Introduction
The homotopy perturbation method (HPM) is a new approach searching for an analytical approximate solution of linear and non-linear problems. Several analytical and numerical methods have been proposed to solve FDEs. Adomian decomposition method (ADM) [1,8,9,10,11,12,13,15], Variational iteration method (VIM) [4,5] and other methods[12,13,14]. The homotopy perturbation method is applied to non-linear coupled system of reaction-diffusion equation [3] to Helmoltz equation and fifth-order Kdv equation [17]. In this paper, we consider the following class of eigenvalue problems of the form 


[image: image203.wmf]å

=

@

i

n

n

t

Y

t

Y

0

)

(

)

(

                                  (1)
along with the boundary conditions 
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A very interesting application on the fractional Sturm-Liouville equation is the fractional diffusion-wave equation given by 
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Subject to
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where 
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 is constant. This paper has been divided as follows: a brief review of fractional calculus is given in section 2. Analysis and the implementation of HPM on problem (1), are discussed in section 3 and 4, respectively. The numerical results of the fractional Sturm-Liouville problem for solving the fractional diffusion and wave equation will be given in the section 5. Finally, conclusions are presented in the section 6.

2  Fractional calculus  
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Definition 2 The Riemann-Liouville fractional integral operator of order or 
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Remark   The Riemann-Liouville integral operator has the following properties:
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Definition 3  The Caputo's fractional  derivative of  
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is given by
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Noting to above definitions, for 
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Definition 4  The Mittage-Leffler function 
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3  Analysis of the method

In the first, we present a review of the HPM [6,7]. To illustrate the basic idea of the HPM, we consider the following non-linear differential equation
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along with the boundary condition
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where 
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 is a general differential operator, 
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By the homotopy perturbation technique, we construct a homotopy 
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where 
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The changing process of from zero to unity is just that of  
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In this paper, the present authors will first use the embedding parameter
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as a small parameter and assume that solution of Eq.(7) can be written as a power series in 
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Setting 
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 results in the approximate solution Eq.(5)
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The coupling of perturbation method and the homotopy method is called the homotopy perturbation method, which has eliminated of the traditional perturbation method. On the other hand, the proposed technique can take full advantage of the traditional perturbations techniques. The series (8) is convergent for most cases however, the convergent rate depends upon the non-linear operator 
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 4   HPM for fractional Sturm-Liouville problems

To solve Eq.(1), by means of homotopy perturbation method, we choose linear operator 

                                                   
[image: image64.wmf])],

(

)

(

[

)]

(

[

t

y

t

p

D

t

y

L

¢

=

a

                                                 (9)
With the property 
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 is known analytic function representing the non-homogeneous term. Therefore, Eq.(1) can be rewritten as follows 
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By the homotopy perturbation technique proposed by He [6,7], we can construct a homotopy 
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One may now try to obtain a solution of Eq.(10) in the form
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where 
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Collecting terms of the same powers of 
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The initial approximation 
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5 Numerical results

Example 1  
Consider the regular fractional eigenvalue problem
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According to (11), we construct the following homotopy
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Substituting (12) into (15) and collecting terms of the same powers of 
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yields
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According to initial condition 
[image: image91.wmf],

0

)

0

(

=

¢

y

 it is natural to choose initial approximation 
[image: image92.wmf],

)

(

A

t

y

=

 where 
[image: image93.wmf]A

 is constant. Now, applying the operator to the above set of equations, we get


[image: image94.wmf],

)

(

0

A

t

Y

=



[image: image95.wmf]2

3

1

)

2

5

(

)

(

t

A

A

t

Y

G

-

=

l

,


[image: image96.wmf]3

2

2

3

2

)

4

(

)

2

5

(

)

(

t

A

t

A

A

t

Y

G

+

G

-

=

l

l

,


[image: image97.wmf],

)

2

11

(

)

4

(

)

2

5

(

)

(

2

9

3

3

2

2

3

3

t

A

t

A

t

A

A

t

Y

G

-

G

+

G

-

=

l

l

l


.

.

.


[image: image98.wmf].

)

1

2

3

(

)

(

)

(

2

3

0

i

n

i

i

n

t

i

A

t

Y

å

=

+

G

-

=

l


Hence, from (12), as 
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denotes the Mittag-Leffler function. Now, using the boundary condition (14), we explore the first three eigenvalues 
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 represents the number of terms used in the following series, i.e.
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Table1. The approximation to the first three eigenvalues
	i
	
[image: image107.wmf]i

,

1

l


	
[image: image108.wmf]i

,

2

l


	
[image: image109.wmf]i

,

3

l



	17
	2.11027708
	13.76538387
	24.10237991

	18
	2.11027708
	13.76538208
	24.26958889

	19
	2.11027708
	13.76538224
	24.23941883

	20
	2.11027708
	13.76538223
	24.24383027

	21
	2.11027708
	13.76538223
	24.24329538

	22
	2.11027708
	13.76538223
	24.24328578

	23
	2.11027708
	13.76538223
	24.24328687

	24
	2.11027708
	13.76538223
	24.24328675

	25
	2.11027708
	13.76538223
	24.24328676


Example 2  
Consider the following non-homogeneous fractional diffusion-wave equation
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along with the boundary conditions:
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By separation of variable method, we suppose 
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The Sturm-Liouville problem (18), has eigenvalues 
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According to the initial condition, it is natural to choose initial approximation 
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is constant. Consequently, the first new components of the homotopy perturbation solutions of Eq. (19) are derived as follows 
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So, we get
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 denotes the Mittag-Leffler function. Now, we look for the solution of the non-homogeneous problem (16), which is of the form 
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From [2] we have 
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Therefore, from (16) we obtain 
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Hence, by identifying the coefficients two side of the 
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that is a non-homogeneous fractional  Sturm-Liouville equation with 
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That is independent of 
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According to the initial condition, it is natural to choose initial approximation 
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6  Conclusion

In this work, the homotopy perturbation method has been applied to study fractional Sturm-liouville problems. The method has been successfully applied to fractional diffusion-wave equations. In the example 1, we have proposed the numerical solution using mathematica. The solution are the same as thos results given by Adomian decomposition method.
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