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Abstract
In this paper, we investigate the existence of a positive solution of fully fuzzy linear equation systems where fuzzy coefficient matrix is a positive matrix. This paper mainly discusses a new decomposition of a nonsingular fuzzy matrix, a symmetric matrix times to a triangular (ST) decomposition. By this decomposition, every nonsingular fuzzy matrix can be represented as a product of a fuzzy symmetric matrix S and a fuzzy triangular matrix T. 
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[image: image1.wmf] 1  Introduction

The concept of fuzzy numbers and fuzzy arithmetic operations were first introduced by Zadeh [31] and Dubois and Prade [13].We refer the reader to [25] for more information on fuzzy numbers and fuzzy arithmetic. Fuzzy systems are used to study a variety of problems ranging from fuzzy topological spaces [10]to control chaotic systems[20,24], fuzzy metric spaces [28], fuzzy differential equations [3], fuzzy linear and nonlinear systems [1,2,5,9] and particle physics [15,16,17,18,19,27,29].

One of the major applications of fuzzy number arithmetic is treating fuzzy linear systems and fully fuzzy linear systems and several problems in various areas such as economics, engineering and physics boil down to the solution of a linear system of equations. In many applications, at least some of the parameters of the system should be represented by fuzzy rather than crisp numbers. Thus, it is immensely important to develop numerical procedures that would appropriately treat fuzzy linear systems and solve them.

Fridman et al. [21] introduced a general model for solving a fuzzy 
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 linear system whose coefficient matrix is crisp and the right –hand side column is a fuzzy vector of positive fuzzy numbers. 
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They used the parametric form of fuzzy numbers and replaced the original fuzzy 
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linear system by a crisp 
[image: image5.wmf]n

n

2

2

´

linear system and studied duality in fuzzy linear systems 
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where A and B are real
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 matrices, the unknown vector x is vector consisting of n fuzzy numbers and the constant vector y is consisting of n fuzzy numbers [22]. In [1,2,9] the authors presented conjugate gradient and LU decomposition method for solving general fuzzy linear systems or symmetric fuzzy linear systems. The numerical methods for fuzzy linear systems were proposed by Allahviranloo [6, 7, 8]. Also, Wang  et al. [30] presented an iterative algorithm for solving dual linear system of the form 
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,where A  is real 
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 matrix , the unknown vector x  and the constant vector u  are all vectors consisting of fuzzy numbers and Abbasbandy et al. [4] investigated the existence of a minimal solution of general dual fuzzy linear equations system of the form 
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, where A and B are real 
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 matrix, the unknown vector  x  is vector consisting of n fuzzy numbers and the constant vectors f and c  are consisting of  m  fuzzy numbers. Recently, Muzziloi et al. [26] considered fully fuzzy linear systems of the form 
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 are square matrices of fuzzy entries and 
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 fuzzy number vectors and Dehghan  et al. [11] considered fully fuzzy linear systems of the form 
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 where A and  b  are a fuzzy matrix, the unknown vector  x  is vector consisting of  n  fuzzy numbers and the constant  b  are vectors consisting of  n  fuzzy numbers.

In this paper we intend to solve the fuzzy linear system 
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 matrices consisting of positive fuzzy numbers, the unknown vector 
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 is a vector consisting of  n positive fuzzy numbers and the constant 
[image: image22.wmf]b

~

are vectors consisting of  n positive fuzzy numbers. This paper mainly discusses a new decomposition of a nonsingular fuzzy matrix, the symmetric times triangular (ST) decomposition. By this decomposition every nonsingular fuzzy matrix can be represented as a product of a fuzzy symmetric matrix S and a fuzzy triangular matrix T.

2  Fully Fuzzy Linear System 

Definition 2.1  A matrix 
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is called a fuzzy matrix, if each element of 
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be positive (negative). Similarly, non-negative and non-positive fuzzy matrices may be defined

Let the elements of 
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, where A,M and N are three crisp matrices with the same size of 
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 are called the  center matrix and the right  and left  spread matrices, respectively where 
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Definition 2.2  A square fuzzy matrix 
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Definition 2.3  Let  
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From here, we use Dubois and Prade
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s approximate multiplication 
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Definition 2.4  Consider the 
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 be the unknown and known vectors respectively therefore we have
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The matrix form of the above equation is
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 are positive fuzzy vectors. This system is called a fully fuzzy linear system (FFLS). Also if 
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are positive LR fuzzy numbers, we call the system (1) a positive FFLS. In many applied problems, engineers have some information about the range of fuzzy solution. In these cases with fixed y and z as the left and right spread. The original problem is transformed to finding a vector x which satisfies in the following systems:
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Definition 2.5  Consider the positive FFLS (1). 
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In addition, if 
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3  Gneral  fully fuzzy linear system
Usually, there is no inverse with respect to addition element for an arbitrary fuzzy number 
[image: image68.wmf]1

~

E

u

Î

, i.e., there exists no element 
[image: image69.wmf]1

~

E

v

Î

 such that 

[image: image70.wmf]0

~

~

=

Å

v

u


Actually, for all non crisp fuzzy numbers 
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Therefore, the fully fuzzy linear system of equations
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Can not be equivalently replaced by the fully fuzzy linear equation system
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which had been investigated. In the sequal, we will call the fully fuzzy linear system, a general dual fully fuzzy linear system 
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Thus we easily have 
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Theorem 1  Let 
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By replacing 
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Theorem 3  Let  
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4  Numerical examples

Example 1   Consider the fully fuzzy linear system in the following form:
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Therefore we have 
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Therefore by applying ST decomposition of A we obtain :

[image: image161.wmf]4511/4

,.

515/401

ST

æöæö

==

ç÷ç÷

èøèø


Furthermore we have:
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By using ST decomposition, we have:
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Therefore the solution of fully fuzzy linear system is a fuzzy vector.
Example  2   Consider the fully fuzzy linear system in the follow form:
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Therefore we  have 
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Therefore with apply ST decomposition of A we obtain:
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Furthermore we have:
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By using ST decomposition, we have 
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Therefore the solution of the fully fuzzy linear system is a crisp vector.
5  Summary and conclusions
In this paper, we propose decomposition for the nonsymmetric or the symmetric indefinite of coefficient matrix [23] of fully fuzzy linear systems. We obtain a fuzzy solution for fully fuzzy linear system by decomposing coefficient matrix to the symmetric times triangular (ST) where S is the symmetric matrix and T is the triangular matrix.
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