در نظر گرفتن تسهیلات ترکیبی در مدل طراحی شبکه لجستیک حلقه بسته

احسان باقری، الهام بهمنی، اکبر عالمی‌تیرزی، فرهاد فرود

1- دانش آموخته کارشناسی ارشد دانشگاه شهید بهشتی، دانشکده مدیریت و حسابداری
2- دانشجوی کارشناسی ارشد دانشگاه آزادی، دانشکده ریاضی
3- دانشیار گروه مدیریت صنعتی دانشگاه شهید بهشتی، دانشکده مدیریت و حسابداری
4- استادیار گروه مدیریت صنعتی دانشگاه شهید بهشتی، دانشکده مدیریت و حسابداری

چکیده

مطالعه طراحی شبکه لجستیک شامل تصمیمات استراتژیکی می‌شود که به پیکرندی زنجیره‌تامین اشاره و به عنوان مسابق زیرساختی در مدیریت زنجیره‌تامین، اثرات دریابی روى تصمیمات تکیکی و عملیاتی شرکت داردند. مقاله حاضر به طراحی یک مدل غیرخطی طراحی شبکه لجستیک مستقیم و عکوس‌گیر جدید محصولی، چند رویه‌ای با در نظر گرفتن تسهیلات ترکیبی می‌پردازد که در تئوری آن مکان مناسب برای احداث تسهیلات از بین منابع باراوه، ظرفیت مناسب هر تسهیل و همچنین میزان جریان بین هر یک از لایه‌های شبکه به دست می‌آید.

کلمات کلیدی: طراحی شبکه زنجیره‌تامین، لجستیک حلقه بسته، برنامه‌ریزی غیر خطی عدد صحیح آمیخته.

1 مقدمه

توسعه و روزافزون رفتاری و جهانی شدن بازار محصولات، موجب شده که ساختمان‌ها جهت بقای خود در بازار، نازه‌های جدی‌تری در راستای تامین و تدارک تولید، توزیع کالا در شرکت‌های تامین به کارگیرند نا توان پاسخگویی به نیازهای منوی انتخابه باشد. در سالیان اخیر و با تشدید فضایی رقابتی این موضوع که به عنوان یک عنصر در حیات اقتصادی و عملیاتی شاخصه شده است؛ پیش از بیش به عنوان یک مسائل سیاست مهم مورد توجه قرار گرفته. در این ميدریت زنجیره‌تامین (SCM) به عنوان یکی از شاخه‌های مهم تحقیقاتی مورد توجه دانشگاه‌های نیز مدیران کلان سازمان‌های تولیدی و پیگاه‌های تجاری بوده است. مطالعه طراحی شبکه لجستیک جزو تصمیمات استراتژیکی است که به پیکرندی زنجیره‌تامین

* عهده‌دار مکاتبات:
e.yadegari@mail.sbu.ac.ir ; ehsanyadegari@yahoo.com

آدرس الکترونیکی:
اشاره‌دادار و به عنوان یک مطالعه زیرساختمانی در مدیریت زنجیره تأمین ارائه‌ای روی سایر تصمیمات تاکیدیکی و عملیاتی شرکت دارد. در حالی که پروره طراحی شکسته مقدار زیادی سرمایه را به خود اختصاص می‌دهد و تنهالیته که در حال حاضر مستقیم مشوند؛ انتظار می‌رود که برای دوره زمانی طولانی مدت به کار گرفته شوند.

اما به دلیل تمهیدات دولت، سیاست زیست محیطی و آموزشی و مسائل اجتماعی و نیاز مشتریان توجه رو به رشد بر لجستیک معکوس شده از طرفی در دو دوره اخیر ثبت شده در میاند کم‌کم که در این تحقیق بر فناوری‌ها تولید مجدد و بازیافت متمرکز کرده و به موفقیت‌های گسستگی از لحاظ اقتصادی دست یافته‌اند که می‌توان این امر را یک سری از عوامل محور به یک آپورنده لجستیک معکوس به حساب آورد. از طرفی در طراحی شکسته لجستیک مستقیم و معکوس به صورت جدا از هم موجب روابط زیست‌مانه‌ای و زیست‌شناسی می‌شود که این امر به اهمیت در نظر گرفتن شکسته به صورت پیکره‌های مستقیم و معکوس می‌افزاید.

2 مورور مقالات

پیش‌تر ایده‌ای موجود در زمینه طراحی شکسته لجستیک شامل مدل‌های مختلف مکان‌باین‌های تسهیلات بر بایه برنامه‌ریزی خونه از راه امکان‌های است. این مدل‌ها انواع مختلف را از مدل‌های ساده از نظر مکان‌باین‌های تسهیلات با طبیعت نامحدود تا مدل‌های بی‌پردازه تر نظر مدل‌های چند رده‌ای با طبیعت محدود شامل می‌شوند. جایانام و همکاران یک مدل برنامه‌ریزی خودی مدل طراحی شکسته لجستیک معکوس به هدف حداکثر سایز زیرینه ارائه شده‌اند. در این مقاله نهایی به فعالیت‌های احیا مصالحات برگشته برداخته شده‌اند [1].

یکی از عوامل مهم در طراحی شکسته لجستیک معکوس عدم قطعیت در تقاضا و همچنین نوع و کیفیت مجموعات برگشته است. لیست و دکتر به دو نظر گرفتن این موضوع در یک شکسته بازیافت سنگن به ارائه یک مدل برنامه‌ریزی عدد صحیح برداخته و آراس و همکاران به ارائه یک مدل غیرخطی برای تعیین مراکز جمع‌آوری مورد نیاز در مطالعه مورد پرداخته و نکته قابل توجه در این مقاله توانایی مدل برای تعیین قیمت خرید مصارف شده در یک شکسته لجستیک معکوس برداخته‌اند و نکته قابل توجه در این مقاله مانند مدل برای تعیین قیمت خرید مصارف شده در از دارنده‌اند می‌باشد [3]. آسستر و همکاران یک شکسته نیک‌پارچه را که در آن شکسته لجستیک مستقیم، موجود در فرض پژوهش تا زمان جمع‌آوری و احیا در لجستیک معکوس مکان‌باین‌های می‌شنود؛ طراحی مورد بررسی به استقلال آوراند گذشته‌های لجستیک طرف سوم، که در اولین‌جا مدل پیشنهادشونده به دو هدف برنامه‌ریزی عدد صحیح آمیخته به ادامه مراکز توزیع با مراکز جمع‌آوری می‌ریزند. این احیا از طرف دیگر روند توزیع گرفت [5]. افیلی‌جان نشان داد که در احیا شکسته لجستیک به طور پیکره‌ای و هم‌زمان در مقایسه با رویاروی سنگن در مورد موجب چرایی تحریک قابل توجه در هریک‌ها گردد. سالما و همکاران ۲۰۰۷ سعی بر آن داشته‌اند تا رفع ضعف‌های موجود در مقاله افیلی‌جان مدل‌های عادی به کمک برنامه‌ریزی خطی عادت صحیح آمیخته‌ی ارائه‌دهند [6]. یکی دیگر از مقالاتی که به خوبی به طراحی نیک‌پارچه شکسته لجستیک مستقیم و معکوس آمیخته‌ای ارائه‌دهند...
برداخت؛ مقاله لی و دانگ است که در آن از یک نوع تسهیل ترکیبی که نمی‌توان مراکز توزیع در جریان مستقیم و هم‌نیاز مراکز جمع‌آوری در جریان معکوس را بر عهده دارد که برای طراحی شکل لجستیک محصولات راندمای استفاده شده است. و نسخه یک لجستیک حلقه‌ای توشیم داده که در آن جنرالهای رو به جلو و بر گشنی از مراکز توزیع به عنوان تسهیل‌های ارتباطی استفاده کرده و هم‌نیاز آنها اگرچه بیشتر بین‌ماینده ست. درخت گسترش‌ها را برای حل مدل ارائه داده است.

در این مقاله، نتایج ملاحظه شده در مدل پیشنهادی به هماهنگی و تحلیل آن اشاره گردیده و در انتها درک و نیاز به کاربردن سه جستجو مخصوص جهت بهبود آنها و بهبود جواب‌های غیر مستقیم توشیم داده است. در بخش دوم، مدل پیشنهادی بین آمده و زیگی های آن شرح داده شد. در بخش سوم تا مدل بی‌شده به هماهنگی و تحلیل آن اشاره گردیده و پیشنهادات برای تحقیقات بعدی در قالب بخش نشان گردیده شده‌اند.

۳ تشخیص مساله و بیان مدل در نهایت

شکل پیکاره لجستیک مستقیم/معکوس به صورت یک مدل کتاب‌خانه است. در مدل طراحی شده در جریان مستقیم مواد اولیه برای تولید محصولات از نمای مکانیک به مراکز تولید و احیا منتقی می‌شود و مسی کالاهای تولید شده از مراکز تولید به مراکز توزیع و از آنجا به میانه‌های منتقی می‌شوند. در جریان معکوس، محصولات بر گشنی پس از جمع آوری و باتسی به سه گروه محصول قابل احیا، محصول اولیه بر گشنی است. محصولات قابل احیا به مراکز تولید و احیا حمل شده و عملیات ساخت مجدد (احیا) روی آنها انجام می‌گیرد. محصولات بر گشنی که نیاز به بازسازی دارند به مراکز مکانیکی انتقال می‌یابند و عمل‌های جداسازی روی آنها انجام گرفته و قطعات قابل استفاده آنها در اختیار منتقی کننده قرار می‌گیرد تا مجدداً از طریق جرید مستقیم وارد جرید تولید گردند و در نهایت محصولات قرارشده در مراکز انتهایی می‌روند.

نکته مهم دیگری که در این مدل موثر و جلوگیری قرار گرفته است، این است که شکل ترکیبی مستقیم و جمع‌آوری است. این مشاهده‌ها در جریان مستقیم نشکن مراکز توزیع و در جریان معکوس نشکن مراکز جمع‌آوری را ایفا کرده و استفاده از این تسهیلات باعث کاهش جویی در هزینه‌های اعداد می‌گردد. از دیگر ویژگی‌های مدل ارائه شده می‌توان به موارد زیر اشاره نمود:

- جرید مواد نشکن در دو مکانیک می‌توانند برقرار کنند و همچنین میزان مراکز این تسهیلات در یک ناحیه وجود دارد و در ضمن نظریه مربوط به تسهیلات به عنوان یک معتبر در نظر گرفته شده است.

مهم ترین تصمیمات اتخاذ شده در مدل ارائه شده می‌توان به موارد زیر اشاره کرد:

- میزان تولید و تغییر نظریه ایجاد هرکدام از تسهیلات (مراکز تولید و احیا، مراکز توزیع، مراکز جمع‌آوری و بازرگانی و مراکز انتهایی) از مجموعه مکان‌های بالقوه برای احداث هرکدام از آنها.
شکل ۱. شبکه زنجیره‌تامین حلقه‌ی‌هست

در ادامه به توضیح مدل حلقه بسته پیشنهادی پرداخته می‌شود که قبل از آن تعریفی از مجموعه‌ها، پارامترها و متغیرهای تصمیم ارائه گرددیه است.

۱- مجموعه‌ها

مجموعه محسولات تولیدی.

مجموعه سطوح ظرفیت موجود برای تسهیلات.

مجموعه مکان‌های ثابت تامین کننده.

مجموعه مکان‌های بالقوه مراکز تولید و احیا.

مجموعه مکان‌های بالقوه مراکز توسعی.

مجموعه مکان‌های بالقوه مراکز انهدام.

مجموعه مکان‌های بالقوه ترکیبی مراکز جمع آوری و مراکز توسعی.

۱-۳ پارامترها

تابعیابی مشتری مرکز بار برای محصول p d_{ik}
قیمت فروش واحد محصول p هزینه واحد تولید محصول p در کارخانه i هزینه واحد عملیاتی در مرکز توزیع j هزینه واحد پاژرسی در مرکز جمع آوری/پاژرسی l هزینه واحد دوباره تولید محصول p در کارخانه i هزینه واحد بازسازی محصول p هزینه واحد انهدام محصول p

برای انتقال از تأمین کننده v به کارخانه i هزینه واحد حمل و نقل محصول p برای انتقال از مرکز مشتری k به جمع آوری/پاژرسی l هزینه واحد حمل و نقل محصول p برای انتقال از مرکز جمع آوری/پاژرسی l به مرکز انهدام m هزینه واحد حمل و نقل محصول p برای انتقال از مرکز مشتری k به جمع آوری/پاژرسی l هزینه واحد حمل و نقل محصول P با سطح طرافیت m هزینه ثابت تاسیس مرکز تولید/احیا در مکان b با سطح طرافیت L هزینه ثابت تاسیس مرکز توزیع در مکان b با سطح طرافیت F هزینه ثابت تاسیس مرکز جمع آوری/پاژرسی در مکان b با سطح طرافیت R هزینه ثابت تاسیس مرکز انهدام در مکان n با سطح طرافیت k میزان هزینه صرفه جویی شده در اثر ادغام مرکز توزیع با سطح طرافیت n با مرکز جمع آوری/پاژرسی n در مکان m $\text{توسط نرخ} g(n)$ $\text{محصول} p$ که توسط مشتریان برگشته داده می‌شود.
متغیرهای تصمیم

- متغیرهای تصمیم پیوسته
 - QVI_{vip}
 - QII_{vip}
 - QJK_{jkp}
 - QKL_{kp}
 - QL_{lp}
 - QLV_{lp}
 - QLM_{imp}

- متغیرهای تصمیم گسته

 1. اگر مرکز تولید/احواج i با سطح ظرفیت X_i^n نامیپس شود.
 2. در غیر این صورت

 1. اگر مرکز توزیع j با سطح ظرفیت Y_j^n نامیپس شود.
 2. در غیر این صورت

 1. اگر مرکز انهدام m در سطح ظرفیت U_m^n نامیپس شود.
 2. در غیر این صورت

- بیان ریاضی مدل

Max $Z = TI - TC$

$TI = \sum_{i} \sum_{k} \sum_{p} QJK_{kp} r_{ip}$

$TC = \sum_{i} \sum_{n} FX_i^n X_i^n + \sum_{j} \sum_{n} FY_j^n Y_j^n + \sum_{k} \sum_{p} QJK_{kp} OC_j$
تابع هدف مدل تمرکز بر بیشترین‌سازی سود کل شرکت‌های که هزینه‌های شبکه از درآمد کل شبکه کسر می‌شود. در آن حاصل از فروش از ضرب جریان مواد انتقالی از مراکز توزیع به مشتریان در قیمت فروش محصولات حاصل می‌شود و هزینه‌های شبکه زنجیره‌تامین شامل هزینه ثابت احداث تسهیلات، هزینه تولید محصولات در کارخانجات، هزینه عملیاتی در مراکز توزیع، هزینه بازرگانی در مراکز جمع آوری، هزینه دوباره تولید در کارخانه‌ها، هزینه دوباره تولید در کارخانجات، هزینه بازرگانی برای تامین کننده‌ها و هزینه انتقال در مراکز انتقال و هزینه‌های حمل و نقل بین لاشه‌های شبکه زنجیره‌تامین حلقه‌بندیت می‌باشد. در ادامه به توضیح محدودیت‌های مدل لجبستیک حلقه‌بندی می‌پردازیم.

3.4 محدودیت‌های مدل

محدودیت تقاضا

\[\sum_{k} QJK_{kp} = d_{kp} \quad \forall p \]

(4)

محدودیت (4) تضمین می‌کند که تقاضای همه مشتریان به ازای تمامی محصولات ارضا گردد.

محدودیت‌های شبکه

\[\sum_{v} QVI_{vip} + \sum_{l} QLI_{lvp} = \sum_{j} QIJ_{ijp} \quad \forall i, p \]

(5)

\[\sum_{l} QLI_{lvp} = \sum_{j} QJK_{jp} \quad \forall j, p \]

(6)

\[\sum_{j} QJK_{jp} = r_{kp} \sum_{l} QKL_{klp} \quad \forall k, p \]

(7)

\[\sum_{l} QKL_{klp} = \sum_{i} QLI_{lvp} + \sum_{m} QLV_{lvp} + \sum_{m} QLM_{lmp} \quad \forall l, p \]

(8)

محدودیت (5) تضمین می‌کند که میزان جریان‌های ورودی به هر مركز تولید و اجایان بیشترین جریان خروجی از آن گره برابر باشد. محدودیت (6) تضمین می‌کند که میزان جریان‌های ورودی به هر مركز توزیع با میزان جریان خروجی از آن گره برابر باشد. محدودیت (7) تضمین می‌کند که تمامی محصولات برگشتی از مشتریان از طریق
مراکز جمع آوری و پایررسی جمع آوری گردند. محدودیت (8) تضمن می‌کند که میزان جریان‌های ورودی به هر مراکز جمع آوری و پایررسی، با میزان جریان خروجی از آن گره برابر باشد.

\[
\sum_{v} QLV_{v} = n_{p} \sum_{k} QKL_{k,p} \quad \forall p, l
\]

\[
\sum_{i} QLI_{i} = r_{i} \sum_{k} QKL_{k,p} \quad \forall l, p
\]

\[
\sum_{m} QLM_{m,p} = m_{p} \sum_{k} QKL_{k,p} \quad \forall l, p
\]

محدودیت (9) تضمن می‌کند که درصد مشخصی از محصولات بازگشتی از طریق مراکز جمع آوری و پایررسی به مراکز انجام داده شده است. محدودیت (10) تضمن می‌کند که درصد مشخصی از محصولات بازگشتی از طریق مراکز جمع آوری و پایررسی به مراکز تولید و اخبار برای عملیات دوباره تولید منقرض شوند.

محدودیت (11) تضمن می‌کند که درصد مشخصی از محصولات بازگشتی از طریق مراکز جمع آوری و پایررسی به ابعاد مناسب گردیده است.

\[
\sum_{v} QLV_{v} \leq \sum_{n} CAS_{v} \quad \forall v, p
\]

\[
\sum_{i} QLI_{i} \leq \sum_{n} CAR_{i} \cdot X_{i} \quad \forall i, p
\]

\[
\sum_{m} QLM_{m} \leq \sum_{n} CAM_{n} \cdot U_{m} \quad \forall m, p
\]

\[
\sum_{v} QVI_{v} \leq \sum_{n} CAI_{v} \cdot X_{i} \quad \forall i, p
\]

\[
\sum_{i} QII_{i} \leq \sum_{n} CAJ_{i} \cdot Y_{j} \quad \forall j, p
\]

\[
\sum_{k} QKL_{k} \leq \sum_{n} CAL_{k} \cdot Z_{l} \quad \forall l, p
\]

\[
\sum_{l} QLI_{l} + \sum_{v} QLV_{v} + \sum_{m} QLM_{m} \leq \sum_{n} CAL_{l} \cdot Z_{l} \quad \forall l, p
\]

محدودیت های (12-18) جریان‌های اجزای شیبکه‌ی جهت فیکس مشخص‌کردن جهت نظر و یا در جهت مکانیک‌ریسی را به گونه‌ای تنظیم می‌نمایند که از حداکثر طرفین شدیده‌کننده مورد نظر تجاوز ننمایند.
سایر محدودیت‌ها

\[\sum_{n} X_i^n \leq 1 \quad \forall i \tag{19} \]
\[\sum_{n} Y_j^n \leq 1 \quad \forall j \tag{20} \]
\[\sum_{n} Z_l^n \leq 1 \quad \forall l \tag{21} \]
\[\sum_{n} U_m^n \leq 1 \quad \forall m \tag{22} \]
\[QVI_{ijp}^k, QIJ_{jkp}, QJK_{kjp}, QKL_{kjp}, QLI_{jlp}, QLV_{jlp}, QLM_{jlp} \geq 0 \tag{23} \]
\[X_i^n, Y_j^n, Z_l^n, U_m^n \in \{0, 1\} \tag{24} \]

محدودیت (19) تضمن می‌نماید که در هر مکان حداکثر یک مرکز تولید / ایجاد و با یک سطح ظرفیت تخصصی
پایین. محدودیت (20) تضمن می‌نماید که در هر مکان حداکثر یک مقر کننده و با یک سطح ظرفیت تخصصی
پایین. محدودیت (21) تضمن می‌نماید که در هر مکان حداکثر یک مرکز جمع‌آوری / بازرگانی و با یک سطح
ظرفیت تخصصی پایین. محدودیت (22) تضمن می‌نماید که در هر مکان حداکثر یک مرکز اهدای و با یک سطح
ظرفیت تخصصی پایین. محدودیت‌های (23-24) ماهیت صفر و یک متغیرهای تصمیم گیری است و غیر منفی
بودن متغیرهای تصمیم پوسته را نشان می‌دهند.

4 نتیجه

در این مقاله یک مدل برنامه‌ریزی غیرخطی عدد صحیح برای طراحی شبکه لجستیک مستقیم/ مکاشفه ارایه شده
است که تاکیدی به آن متاکیک بر پیشنهاد صنعت سازی صنایع کل شبکه می‌باشد. مدل ارایه شده به صورت جاده محصولی،
چند ارجابی ارایه گردیده که با در نظر گرفتن تسهیلات ترکیبی در شبکه مورد نظر باعث جلوگیری از زیر هزینه
و در نتیجه کاهش هزینه‌ها و افزایش سود می‌شود.

موردی که در ذیل اشاره شده است را می‌توان به عنوان جنبه‌هایی برای تحقق آن‌ها بیان کرد:

- لحاظ سیاست‌های تخفیف در بخش‌های خرید به موارد اولیه و فروش محصول در مدل.
- در نظر گرفتن عدم قطعیت در تفاضل کالا های برگشتی و همچنین هزینه‌های حمل و نقل.
- ارایه رویکردی بر مبنای بهینه‌سازی استوار برای مدل‌های جدید هدف طراحی شبکه زنجیره تامین
- ارایه رویکردی حل کارا برای مسائل در ابعاد واقعی.

49

