یک مدل جدید جهت نشان دادن تاثیر قابلیت پخش قطعات در کاهش هزینه‌ها در مطالعه تولید سلولی یوبی

محمد کاظمی*، شیما شفیعی کل ای، سارا فال سلیمانی، مريم نصیری
1- مربی گروه صنایع، دانشگاه مهندسی صنایع، دانشگاه صنعتی بیرجند، بیرجند، ایران
2- دانشجوی کارشناسی دانشگاه مهندسی صنایع، دانشگاه صنعتی بیرجند، بیرجند، ایران

ریLESS مقاله: 28 تیر 1391
پذیرش مقاله: 27 آذر 1391

چکیده

در این مقاله یک مدل برای طراحی پیکربرنده در سیستم‌های تولید سلولی یوبی با مسیر‌های پردازش جایگزین ارائه شده است. یکی از نکات قابل توجه در این مدل قابلیت یکپارچه کردن فرق بر روی انواع مسیر‌هایی که توان انجام آن را دارند می‌باشد. همچنین در مدل ارایه شده زمان بیکاری مسیرها و سلول در نظر گرفته شده است. یکی از مزایای روش پیشنهادی اینکه توجهی به هزینه‌های مربوط به جابجایی قطعات و هزینه‌های مربوط به عملیات، هزینه‌های مربوط به بیکاری سلولها و مسیرهای آلات نیز در نظر گرفته شده است.

با در نظر گرفتن هزینه‌های بیکاری سلولی و مسیرهای داخل سلول، نواحی دنیای کاهش هزینه و افزایش بهره‌وری هستند. در پایان، مدل برای تولید سلولی مدل سازی شده و ضمن ارایه مثال به بررسی صحبت مدل ارایه شده پرداخته شده است. همچنین مقایسه بین مدل ارایه شده و حالتی که پخش قطعات، بیکاری سلول و بیکاری مسیر تداومی شده است.

کلمات کلیدی: تولید سلولی، هزینه بیکاری مسیرهای داخل سلول، مسیرهای پردازش جایگزین، مدل‌سازی ریاضی.

1 مقدمه

امروزه صنایع تولیدی تحت فشاری شدید ناشی از افزایش هزینه‌های انرژی، مواد خام، نیروی انسانی، سرمایه و رقابت جهانی قرار دارند در حالی که این روند برای درآمد‌های حفظ خواهد شد، مشکلات پیش روی تولید روز به روز عمیق تر می‌شوند. در این بین سیستم‌های تولیدی انعطاف‌پذیر به عنوان یکی از کلارترین روش‌های مورد استفاده در کاهش و به حذف این مشکلات در فرایندهای تولیدی به شمار می‌رود.
کامیابی اکسپرسی بیشتر نمی‌کند، اما برای کمک‌نیازداران مهارت‌های خاصی می‌یابد.

پیش‌بینی از تولید سلولی CM است. در واقع کاربرد تکنولوژی گروهی GT فیزیکی با عملیات تولید مشابه داشته باشند، است. این مدل ریاضی برای طرح فلزی گروهی یک طوری توسعه داده شده است که ممکن است به طور همزمان ایجاد شود. استراتژی گروه‌بندی هزمان خاناده قطعات و ماشین‌ها به نتایج بهتری نسبت به استراتژی منابع (انتخاب گروه‌ها و مسی تخصیص ماشین‌ها و با بررسی) منجر می‌گردد. زیرا همه تصمیم‌گیری در یک زمان صورت می‌گیرد. ولی این نتایج مدل را پیچیدن می‌کند و در مدل‌های ریاضی بزرگ باعث می‌شود که به زمان زیادی برای حل ناپا‌نامند شود.

آوند و همکاران [1] یکی از جامع‌ترین مدل‌ها با یک رویکرد یکپارچه به سیستم مدیریت نشر طرح پیشنهاد کرده است که در آن ساختار سلول یک بار فرآیند‌سیاست‌گیری، قابلیت پخش قطعات، تریب و تولید عملیات، ظرفیت ماشین‌ها، هزینه عملیات، هزینه راه‌اندازی، حضود اندازه سلول و برنامه‌ریزی تولید در نظر گرفته شده است. مدل به گونه‌ای طراحی شده است که بهترین مسیر را به جای مسیرهایی از پیش تعین شده توسط کاربران انتخاب می‌کند.

آوند و همکاران [2] مفهوم تصمیم‌گیری چندمعیاره را به کار گرفته و یک روش دو مرحله‌ای برای آراشی سلول‌ها، چیدمان درون سلولی مشابه‌ها و چیدمان سلولی را که به عنوان سه مشخصه بنیادی در طراحی هستند، پیشنهاد کرده‌اند.

آکبکنی و همکاران [3] نیز برای تکنیکی در طراحی برنا مرازی تولید و تصمیمات پیکر یکدی‌پیاده سیستم به مسیرهای فرآیند چپ‌گیری، تولید عملیات، تعیین می‌کند، ظرفیت ماشین‌ها و قابلیت پخش قطعات را در مدلی مدلی کرده است.

آکبکنی و همکاران [4] یک برنامه‌ریزی پیشرفته به یک سلول ساختاری یا با انعطاف پذیری مسیرهای طرح عملیات‌های چپ‌گیری و جابجایی مسیرهای ها ارائه می‌نمود. هدف این مدل پیشنهاد شده کمک کردن هزمن مجموع تقسیم‌بندی کاری سلول و مجموع جابجایی مسیرهای آتشفشانی کاری سلولی و جابجایی مسیرهای آتشفشانی است.

کانون و چن [5] آراشی سلولی و توصیف قطعات را مجمع کنند که از یک پیکر یکتایی قوی برای یک کم‌درد مجموع هزینه مسیرهای آتشفشانی یا جابجایی کاری سلولی تبدیل می‌شود. در Merge search داده شده است تا یک راه حل بهینه‌تر BP-Tabu search برای سیستم ایجاد نماید با نگرفتن تکنیک‌های پیشرفته که NP-Hard نماید.

چن و همکاران [6] یکی از مدل‌های ساختاری برای حال مساله آراشی سلولی و همچنین مساله چیدمان سلولی پیشنهاد کرده‌اند. در مرحله اول، سلول، مسیرها و خاناده قطعات با مدل ریاضی استاندارد می‌شوند. در مرحله دوم روبره کل بحث‌ها می‌شود. در حالت اول، سلول به مساله آراشی سلولی را با توجه به توایی عملیات که جابجایی کاری سلولی را کمک می‌کند، بررسی نمایید. در حالت دوم مساله چیدمان سلولی با توجه به یک مساله خاصی به عنوان یک مساله تخصیص NP-Hard هستند، برای حل این مساله کورونیوم Zتیک
به کارگردنگشته شده است تا آنها را حل نماید.

چن و کاکان [7] برنامه‌ریزی تولید و CMS را ترکیب نمود تا مجموعه‌های حاصل از جابجايی بین سلولی مواد، آماده‌سازی سلول تولید، تغذیه اقلام تهیه‌ی بهتری از افق برنامه‌ریزی، آماده‌سازی سیستم برای پردازش قطعات مختلف در دوره‌های زمانی مختلف و انجام عملیات توسط مانشین آلات را کمینه‌کند.

دفرشا و چن [8] یک مدل ریاضی جامع همراه با پیکربندی سلولی پویا، مسرایی با جایگزین، بخش قطعات، توافی عملیات، واحدهای تحت‌گنجانه مانشین‌های پیکسان، ظرفیت مانشین، تعادل حجم کار در میان سلول‌ها، هزینه عملیات، هزینه یکپارچگی فرعی، هزینه ابزار مصرفی، هزینه آماده‌سازی، اندازه سلول و محدودیت نزدیکی مانشین‌ها پیشنهاد کرد. بعد از آن دفرشا و چن (ب) [9] یک الگوریتم ابتکاری ترکیبی دوافزار ایجاد دارد مدل ریاضی جامع همراه با مشخصه‌هایی شبیه به کار قبلاً آنها را حل نماید.

هو و مودیه [10] یک الگوریتم جستجو و مدل برنامه‌ریزی خطی را ترکیب کردن تا یک چیدمان سلولی و سیستم جرایش را طراحی کند.

کاکا و همکاران [11] یک مدل برنامه‌ریزی غیر خطی عدد صحیح مختلط برای طراحی سیستم تولید سلولی پویا ارائه کردند. از طرح استقرار چند رده‌ای مانشین آلات برای جابجاواری مانشین آلات درون سلول‌ها با انتخاب منطقی با توجه به پیوست قطعات استفاده کرده. هدف حداقل کردن هزینه‌های درون سلولی و برオン سلولی و خرید مانشین آلات می‌باشد.

نکت‌دان و همکاران [14] با استفاده از شیب‌های مانگ قطعات در تولید، گروه‌بندی قطعات به خانواده قطعات و تخصیص ماشین‌ها درون سلول‌ها انجام شده است. هدف به حداقل رساندن حركات درون سلولی با الگاه از گروه- بنیگن‌گروه‌گروهی الگوریتم (GGA) است. این مقاله نشان می‌دهد گروه‌گروهی الگوریتم تکامل دیفرانسیل را با نسخه ترکیبی الگوریتم جستجوی محلی مقایسه کرده است. محاسبات نشان داده است که الگوریتم پیشنهادی بهتر عمل می‌کند. (DCMS)

رهفته و همکاران [15] یک مسأله آرایش سلولی را در محدودیت پویا به عنوان سیستم تولید سلولی پویا (DCMS) معرفی کردند.

صفوی و همکاران [16] یک مدل برنامه‌ریزی صحیح مختلط با توجه به جابجاوی درون و بین سلولی بسته‌های مواد با فرض توالی عملیات‌ها، طرح فرآیند جایگزین و قابلیت تکثیر ماشین‌ها و برای طراحی سیستم‌های تولید
سپاری در پیکرینی دوباره را پررسی کردند.

سیدی مهرآباد و صفاوی [199] یک مدل آرایش سلولی پویا ارائه داد که تعادل سلول‌های شکل داده شده می‌تواند در هر دوره متغیر باشد. هدف، کم‌کردن هزینه ماسی، جابجایی ماسی و هزینه جابجایی سلولی می‌باشد. روش‌کردن شبکه عصبی پیشنهاد شده است تا مدل توسعه یافته را حل نماید.

توکلی مقدم و همکاران [209] یک مدل جدید برنامه‌ریزی صحیح مختلط فازی با نقاشی فازی مفهوم جدیدی را بهترین می‌دانند. آنها ارائه سیستم ارائه داده‌ای دانشمندی به فضای مفهوم جدیدی را بررسی کردند. آنها اثبات سیکل و سنتنی کردن ماسی و هزینه‌های تولید و هزینه‌های برون

در جهت بعنوان یک مدل آرایش جدید در محیط تولید سلولی پویا ارائه گردیده است که بازتیزین و یک‌گزیه‌ای آن قابلیت پخش قطعات و در نظر گرفتن هزینه همکاری ماسی و سلول به طور همزمان می‌باشد.

2 مدل ریاضی

2-1 فرضیات مدل

1) هر نوع فعالیت دارای تعادل مشخصی عملیات می‌باشد که با این بر اساس توافق مربوطه انجام گیرد.

2) زمان نیاز برای هر کار از سوی کارگر انجام آن عملیات را دارا می‌باشد، مشخص می‌باشد.

3) میزان تقاضا برای هر نوع فعالیت مشخص می‌باشد.

4) ظرفیت هر نوع مشخص می‌باشد.

5) هزینه‌های ثابت مربوط به هر ماسی مشخص می‌باشد. این هزینه شامل هزینه نگهداری ماسی‌ها می‌باشد.

6) تعادل ماسی‌های موجود بر هر نوع مشخص می‌باشد.
۷ هزینه متغیر تولید برای انجام عملیات روی هر مالیون به میزان قطعه‌ای که به آن مالیون تخصیص می‌یابد و دوره زمانی بستگی دارد.

۸ حرکت قطعات بین سلول‌ها و سیستم به نوع قطعه هزینه آن متفاوت است.

۹ تعداد سلول‌های که باید شکل گیرد از قبل مشخص است.

۱۰ ماکسیمم و مینیمم سایز سلول مشخص می‌باشد.

۱۱ همه مالیون‌ها انجام کلیه بخش از بخش فرآیند را دارای می‌باشند. می‌توان این عملیات را اجرا کرد.

۱۲ در این مدل تعداد مالیون‌ها ثابت نیست و در هر دوره بر حسب تعداد و نوع قطعات در ابتدای دوره مالیونی اضافه و کم شود.

۱۳ قطعات قابلیت یک بخش روی مالیون‌های مختلف در سلول‌های متفاوت را دارند.

۱۴ عدم موجودی کالا در نظر گرفته شده است.

۱۵ مدل زمان شرکت در نظر گرفته شده است.

۱۶ تغییر مکان مالیون‌ها از یک سلول به سلول دیگر در بین دوره‌ها اجرا می‌شود و این کار تا زمان دسته‌بندی مالیونی نمی‌باشد.

۲-۲ اندیس‌ها

اندیس مورد استفاده برای نوع قطعات

\[P = \{1, 2, ..., P\} \]

\[K(p) = \{1, 2, ..., OP\} \]

\[M = \{1, 2, ..., M\} \]

\[C = \{1, 2, ..., C\} \]

\[h = \{1, 2, ..., H\} \]

۳-۲ پارامترها

\[\alpha_{mh} \]

\[\lambda_h \]

\[\delta_{mh} \]

\[\beta_{mh} \]

\[\sigma_{mh} \]

\[\eta_{mh} \]

\[T_m \]
2. متغیرهای تصمیم

\[Z_{kpmch} \]

تعداد قطعه‌های که عملیات کام‌های ماهینی‌های نوع \(m \) در دوره \(h \) انجام می‌شود.

\[N_{mcch} \]

تعداد ماهینی‌های که عملیات \(m \) در دوره \(c \) استفاده می‌شود.

\[K^+_{mcch} \]

تعداد ماهینی‌های که عملیات \(m \) در دوره \(c \) اضافه می‌شود.

\[K^-_{mcch} \]

تعداد ماهینی‌های که عملیات \(m \) در دوره \(c \) خارج می‌شود.

5- مدل ریاضی غیرخطی

مدل غیرخطی ارائه‌شده به شرح زیر می‌باشد:

\[
\min Z = Z_1 + Z_2 + Z_3 + Z_4 + Z_5 + Z_6
\]

\[
s.t.
\]

\[Z_1 = \sum_{h=1}^{H} \sum_{c=1}^{C} \sum_{m=1}^{M} N_{mcch} \alpha_{mh} \]

\[Z_2 = \sum_{h=1}^{H} \sum_{c=1}^{C} \sum_{m=1}^{M} \sum_{p=1}^{OP} T_{kpm} Z_{kpmch} \beta_{mh} \]

\[Z_3 = \left(\frac{1}{\gamma} \right) \sum_{h=1}^{H} \sum_{c=1}^{C} \sum_{p=1}^{OP} \sum_{k=1}^{k<OP} \sum_{m=1}^{M} \sum_{i=1}^{OP}(k+i)_{pmch} \lambda_{ih} \]

\[Z_4 = \sum_{h=1}^{H} \sum_{c=1}^{C} \sum_{m=1}^{M} \sum_{i=1}^{OP} \delta_{mh}(K^+_{mcch} + K^-_{mcch}) \]

\[Z_5 \geq \sum_{m=1}^{M} \left(T_{m} N_{mcch} - \sum_{p=1}^{OP} \sum_{k=1}^{OP} Z_{kpmch} I_{kpm} \right) \eta_{mh} \quad \forall h,c \]

\[Z_6 \geq \sum_{c=1}^{C} \left(T_{m} N_{mcch} - \sum_{p=1}^{OP} \sum_{k=1}^{OP} Z_{kpmch} I_{kpm} \right) \sigma_{mh} \quad \forall h,m \]

\[\sum_{p=1}^{OP} \sum_{k=1}^{OP} T_{kpm} Z_{kpmch} \leq T_{m} N_{mcch} \quad \forall m,c,h \]
2-2-1 تابع هدف

تابع هدف شامل شش جمله است. هزینه‌های مختلفی در طراحی تابع هدف در یک حالت کلی در نظر گرفته می‌شود. ولی همه هزینه‌ها، به‌خاطر پیچیدگی و مشکلات محاسباتی نمی‌توانند در تابع هدف مدل‌سازی شوند. در اینجا باید به هزینه‌های به‌حالات تولید، پریپ و اتفاق، استفاده از مسیرپیش‌گیرانه و قابلیت انعطاف‌پذیری ماهیت‌ها مربوطاند، محدودیت‌های زیر را می‌پذیرد.

جمله اول (1) در بردارهای هزینه‌های نگه‌داری هر دوره برای تهیه مسیون‌های مورد نیاز می‌باشد. این هزینه بر اساس تعداد انواع مسیون‌ها، که در CF باید ارزش مصرف مورد استفاده قرار می‌گیرد، محاسبه می‌شود.

جمله دوم (2) در بردارهای هزینه عمليات مسیون‌ها برای تولید قطعات می‌باشد که این هزینه به‌عنوان هزینه عمليات هر نوع مسیون در هر ساعت در هر دوره زمانی و تعداد قطعاتی که در دوره‌های مختلف روز آن انجام می‌شود و تعداد ساعات مورد نیاز برای هر نوع مسیون دارد.

جمله سوم (3) در بردارهای هزینه‌های جابجایی قطعات بین سیستم‌های مختلف است و این هزینه برای مسیون‌ها در دوره‌های زمانی مختلف متفاوت است.

\[
\sum_{c=1}^{C} N_{mch} \leq A_{mh} \quad \forall m, h
\]

\[
\sum_{m=1}^{M} N_{mch} \leq UM \quad \forall c, h
\]

\[
\sum_{m=1}^{M} N_{mch} \geq LM \quad \forall c, h
\]

\[
\sum_{c=1}^{C} \sum_{m=1}^{M} Z_{kpmch} \leq MM \cdot r_{kpm} \quad \forall h, m, k, p
\]

\[
N_{mc}(h=1) + K_{mch}^+ - K_{mch}^- = N_{mch} \quad \forall m, c, h > 1
\]

\[
\sum_{c=1}^{C} \sum_{m=1}^{M} Z_{kpmch} = D_{ph} \quad \forall k, p, h
\]

\[
K_{m,c}^+ = N_{m,c,1} \quad \forall m, c
\]

\[
N_{mch}, K_{mch}^+, K_{mch}^-, Z_{kpmch} \geq 0 \quad \text{& integer} \quad \forall k, p, m, c, h
\]
جمله چهارم (۴) در بردارنده هزینه نصب و برکاری ماسیوی، هزینه نصب و برکار درون ماسیوی‌ها از یک سلول به سلول دیگر (با انتقال به اینار) در بین دوره‌ها می‌باشد. در یک دلیل تولیدات پویا و بهترین طراحی CF برای یک دوره ممکن است که برای همه دوره‌ها طراحی کارایی‌ناپذیر باشد. با پیچیدگی سلول‌های صنعتی، CF می‌تواند به عملیات کارا، حتی در صورتی که تولید مخلوط و تغییرات منجر داشته باشد، ادامه دهد. ولی برخی زبان‌ها با نواهای سلول‌های صنعتی وجود دارد؛ در واقع حرکت ماسیوی‌ها از یک سلول به سلول دیگر نیازمند نوری کار است و ممکن است منجر به شکستگی ماسیوی گردد. بنابراین با تغییرات تغییرات تاکیدگیر به تغییر ماسیوی‌های موجود در سلول‌های مختلف خواهیم بود. ولی این مکانیزم باعث ایجاد هزینه خواهی شد. این هزینه برای ماسیوی‌ها و در دوره زمانی‌ها مختل متغیر است.

جمله پنجم (۵) در بردارنده هزینه بیکاری سلول برای هر دوره زمانی است. بدین جهت، هزینه بیکاری هر سلول در دوره‌های زمانی مختلف محاسبه می‌شود. سپس به منظور کاهش هزینه‌ها، بزرگترین آن در تابع هدف قرار می‌گیرد.

جمله ششم (۶) در بردارنده هزینه بیکاری ماسیوی در هر دوره زمانی است. بدین جهت، هزینه بیکاری هر ماسیوی در هر سلول برای دوره‌های زمانی مختلف محاسبه می‌شود. سپس به منظور کاهش هزینه‌ها، بزرگترین آن در تابع هدف قرار می‌گیرد.

به طور کلی، کم کردن هزینه بیکاری سلول سهم بیشتری نسبت به هزینه بیکاری ماسیوی در کاهش هزینه‌ها دارد.

2-6 محدودیت‌ها

محدودیت (۷) بانگ‌گر این است که مجموع زمان کلیه عملیات‌های تمام قطعات کمتر مساوی از مجموع زمان در دسترس تمام ماسیوی‌ها است.

محدودیت (۸) بانگ‌گر این است که مجموع تعداد ماسیوی‌های نوع m در کلیه سلول‌ها کمتر مساوی ماسیوی‌های نوع UM در دسترس در دوره زمانی h است.

محدودیت (۹) بانگ‌گر این است که مجموع ماسیوی‌های در هر سلول کمتر مساوی حد بالای ظرفیت سلول (LM) است.

محدودیت (۱۰) بانگ‌گر این است که مجموع ماسیوی‌ها در هر سلول بزرگتر مساوی حد بالای ظرفیت سلول (LM) است.

محدودیت (۱۱) تضمین می‌کند که هر عملیات معیار عمده می‌باشد که توان انجام آن را داراست انجام می‌شود.

محدودیت (۱۲) بانگ‌گر این است که نتایج زمانی‌های m در سلول c در دوره زمانی h برای است با مجموع ماسیوی‌های نوع h-1 و احتمال ماسیوی‌های نصب شده و برکار شده نوع m در سلول c در دوره زمانی h.

محدودیت (۱۳) بانگ‌گر این است که مجموع عملیات‌های در تمام سلول‌ها برای تغییر قطعه در هر دوره زمانی است.
محدودیت (14) بیانگر این است که تعداد ماشین‌های نوع m در سلول c در دوره زمانی 1 برابر با ماشین‌های نصب شده نوع m در سلول c در دوره زمانی 1 است.
محدودیت (15) محدودیت منطقی برگزاری از صفر و عدد صحیح می‌باشد.

3 مثال عددی
در ادامه برای نشان دادن صحبت مدل یک مثال عددی که با نرم‌افزار لینگو 9 حل شده است به تفصیل بیان شده است. تعداد متغیرهای این مدل در این مثل برای با 426 متغیر و تعداد محدودیت‌های آن برای با 337 محدودیت می‌باشد. با نرم‌افزار لینگو به جواب بهینه رسیدیم.
در ادامه جدول پارامترهای مدل و مقدار آن ارایه شده است، جدول 1 و 2 عناوین و مقدار پارامترهای مدل را نشان می‌دهد (اطلاعات تفصیلی پارامترها در فوت بیان شده است).

جدول 1. مجموعه عناوین پارامترها

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>متغیر</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U(0,3)$</td>
<td>β_{mh}</td>
<td>3</td>
</tr>
<tr>
<td>$U(0,3)$</td>
<td>η_{mh}</td>
<td>5</td>
</tr>
<tr>
<td>$U(0,3)$</td>
<td>δ_{mh}</td>
<td>5</td>
</tr>
<tr>
<td>$U(0,3)$</td>
<td>λ_{h}</td>
<td>2</td>
</tr>
<tr>
<td>$U(0,3)$</td>
<td>σ_{mh}</td>
<td>2</td>
</tr>
<tr>
<td>$U(0,3)$</td>
<td>$A_{1 mh}$</td>
<td>4</td>
</tr>
<tr>
<td>$U(0,3)$</td>
<td>α_{mh}</td>
<td>2</td>
</tr>
<tr>
<td>$U(0,3)$</td>
<td>T_{m}</td>
<td>1</td>
</tr>
<tr>
<td>$U(0,3)$</td>
<td>r_{kpm}</td>
<td></td>
</tr>
<tr>
<td>$U(0,3)$</td>
<td>t_{kpm}</td>
<td></td>
</tr>
<tr>
<td>$U(0,3)$</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>$U(0,3)$</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>$U(0,3)$</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>$U(0,3)$</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>$U(0,3)$</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>$U(0,3)$</td>
<td>UM</td>
<td></td>
</tr>
<tr>
<td>$U(0,3)$</td>
<td>LM</td>
<td></td>
</tr>
<tr>
<td>$U(0,3)$</td>
<td>D_{ph}</td>
<td></td>
</tr>
<tr>
<td>$U(0,3)$</td>
<td>MM</td>
<td></td>
</tr>
</tbody>
</table>

جدول 2. مقدار پارامترها

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>δ_{mh}</th>
<th>α_{mh}</th>
<th>β_{mh}</th>
<th>$A_{1 mh}$</th>
<th>η_{mh}</th>
<th>σ_{mh}</th>
<th>T_{m}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>3</td>
</tr>
</tbody>
</table>

جدول 3. محدودیت‌ها

<table>
<thead>
<tr>
<th>محدودیت</th>
<th>δ_{mh}</th>
<th>α_{mh}</th>
<th>β_{mh}</th>
<th>$A_{1 mh}$</th>
<th>η_{mh}</th>
<th>σ_{mh}</th>
<th>T_{m}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>3</td>
</tr>
</tbody>
</table>

79
جدول ۳ اطلاعات مربوط به زمان انجام هر عملیات به قطعه به تفکیک ماشین‌ها و تغییرات هر قطعه در هر دوره

<table>
<thead>
<tr>
<th>P_1</th>
<th>P_2</th>
<th>P_3</th>
<th>P_4</th>
<th>P_5</th>
<th>M_1</th>
<th>M_2</th>
<th>M_3</th>
<th>M_4</th>
<th>M_5</th>
<th>D_{21}</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۱۰۰۰</td>
</tr>
<tr>
<td>۳</td>
<td>۱۲۸۴</td>
</tr>
<tr>
<td>۵</td>
<td>۱۳۰۰</td>
</tr>
</tbody>
</table>

جدول ۴ (ماتریس مقادیر خروجی در دوره اول): این جدول نشان می‌دهد چه تعداد از هر قطعه عملیات k را انجام می‌دهد. بر روی ماتریس M و در سلول c انجام گرفته است. به طور مثال ۱۰۰۰ قطعه شماره یک عملیات اول آن روز مانند M_1 در سلول P_1 یک انجام پذیرفته است.

جدول ۵ مانند جدول ۴ است با این تفاوت که مربوط به دوره دوم به تغییرات هر قطعه و سلول است. در دو جدول ۴ و ۵ به وضعیت جایگاه‌گذاری قطعات درون (در دوره اول) و بیرون سلول (در دوره اول) روی ماسین‌های مختلف و همچنین دستایی پنجره در مجموعه‌های مختلف منابع مورد استفاده قرار گرفته است.

پایان‌नامه‌ای در جدول ۴ هم تغییرات مربوط به قطعات ۱ و ۲ در سلول اول و همین تغییرات مربوط به قطعه ۴ در سلول دوم تغییر می‌شود و همین تغییرات به قطعه ۳ و ۴ در سلول اول و همین تغییرات به قطعه ۵ در سلول دوم تغییر می‌شود. همین تغییرات به قطعه ۳ و ۴ در سلول دوم تغییر می‌شود و همین تغییرات به قطعه ۱ و ۲ در سلول اول و همین تغییرات به قطعه ۵ در سلول دوم تغییر می‌شود. همین تغییرات به قطعه ۵ در سلول دوم و همین تغییرات به قطعه ۴ و ۴ در سلول اول و همین تغییرات به قطعه ۱ و ۲ در سلول اول و همین تغییرات به قطعه ۳ و ۴ در سلول اول و همین تغییرات به قطعه ۵ در سلول دوم تغییر می‌شود.
جدول ۴: ماتریس مقادیر خروجی در دوره اول

<table>
<thead>
<tr>
<th>(p_1)</th>
<th>(p_2)</th>
<th>(p_3)</th>
<th>(p_4)</th>
<th>(p_5)</th>
<th>Machine info</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>Operation</td>
</tr>
<tr>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>(M_1)</td>
</tr>
<tr>
<td>16</td>
<td>598</td>
<td>1000</td>
<td>466</td>
<td>322</td>
<td>(C_1)</td>
</tr>
<tr>
<td>1689</td>
<td>322</td>
<td>322</td>
<td>90</td>
<td>1000</td>
<td>(M_2)</td>
</tr>
<tr>
<td>1300</td>
<td>1300</td>
<td>90</td>
<td>90</td>
<td>1800</td>
<td>(C_2)</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>90</td>
<td>90</td>
<td>1800</td>
<td>(M_3)</td>
</tr>
</tbody>
</table>

جدول ۵: ماتریس مقادیر خروجی در دوره دوم

<table>
<thead>
<tr>
<th>(p_1)</th>
<th>(p_2)</th>
<th>(p_3)</th>
<th>(p_4)</th>
<th>(p_5)</th>
<th>Machine info</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>Operation</td>
</tr>
<tr>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>(M_1)</td>
</tr>
<tr>
<td>16</td>
<td>598</td>
<td>1000</td>
<td>466</td>
<td>322</td>
<td>(C_1)</td>
</tr>
<tr>
<td>1284</td>
<td>322</td>
<td>322</td>
<td>90</td>
<td>1000</td>
<td>(M_2)</td>
</tr>
<tr>
<td>1300</td>
<td>1300</td>
<td>90</td>
<td>90</td>
<td>1800</td>
<td>(C_2)</td>
</tr>
<tr>
<td>500</td>
<td>500</td>
<td>99</td>
<td>1</td>
<td>598</td>
<td>(M_3)</td>
</tr>
<tr>
<td>732</td>
<td>732</td>
<td>220</td>
<td>220</td>
<td>1271</td>
<td>(C_3)</td>
</tr>
<tr>
<td>634</td>
<td>634</td>
<td>1800</td>
<td>1800</td>
<td>1800</td>
<td>(M_4)</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>90</td>
<td>90</td>
<td>1800</td>
<td>(C_4)</td>
</tr>
</tbody>
</table>

جدول ۶: هزینه جابجایی قطعات بین سلول‌ها روزی مابین‌های متغیر در دوره اول را نشان می‌دهد. لازم به ذکر است در این مثال در دوره دوم جابجایی بین سلول‌های کاری نداشته‌ایم.

جدول ۷: مقادیر خطا هزینه جابجایی بین سلول‌های کاری در دوره اول

<table>
<thead>
<tr>
<th>(p_1)</th>
<th>(p_2)</th>
<th>(p_3)</th>
<th>(p_4)</th>
<th>(p_5)</th>
<th>Machine info</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>Operation</td>
</tr>
<tr>
<td>16</td>
<td>1284</td>
<td>1300</td>
<td>1261</td>
<td>200</td>
<td>(C_1)</td>
</tr>
<tr>
<td>500</td>
<td>1261</td>
<td>1300</td>
<td>1261</td>
<td>200</td>
<td>(C_2)</td>
</tr>
</tbody>
</table>

جدول ۸: تعداد ماشین‌های موجود، نصب شده و برکنار شده به نفیکه دیگر ماشین نیست، هر سلول و هر دوره زمانی است.
جدول 7. مانیسی تعداد مашین‌ها

<table>
<thead>
<tr>
<th>N_{mach}</th>
<th>K_{mach}</th>
<th>C_{mach}</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>C_2</td>
<td>C_3</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 8. مانیسی نهایی

<table>
<thead>
<tr>
<th>نوع مدل</th>
<th>مساحت ماهرنگی</th>
<th>بهره‌مند</th>
<th>مساحت آلات</th>
<th>بهره‌مندی ماهرنگی</th>
<th>بهره‌مندی آلات</th>
</tr>
</thead>
<tbody>
<tr>
<td>مدل ایرانی شهرداری</td>
<td>13646</td>
<td>0</td>
<td>13440</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>بهره‌مند</td>
<td>140</td>
<td>16</td>
<td>135</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>پخش قطعات</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

در نظر گرفتن هزینه نصب و برکاری ماسین‌ها موجب یک‌چندان بهینه برای ماسین‌ها در سطح فراوانی در نظر گرفته شده. در این مدل، برکاری سلول و پیکاری ماسین هر فاصله به طور همزمان در نظر گرفته شده است. در حالی که در ساعت‌های اضافی به بکار آمده بیش از آنها به تهیه‌ای مورد بررسی قرار گرفته است. برای مثال وقتی پیکاری سلول به نهایی بررسی می‌شود، ممکن است به یکی از ماسین‌ها نیمه‌مزایدی در نظر گرفته شود. در نتیجه این اقدام، بهبود بهینه و بهبود سیستم مسیری می‌شود.

82
جایگذاری بهتر مسئله‌ها در سیستم‌های سازگاری با کاهش هزینه‌های پیکاری سیستم و مسئله‌ی سازگاری نقشه‌بندی بر مبنای کوئژه‌ای استفاده با دسته‌گردی از خرید مسئله‌های جدید و سرماکاسی‌گذاری کلی در سیستم‌های سازگاری آنجایی و فضای کاری با استفاده در کارکردی از منابع موجود به‌سازاری کیفیت و هم‌چنین با این توان‌افزاری سازگاری سازگاری قابل ملاحظه‌ای در مورد حامل‌های انرژی که بحث روز صنایع است می‌شود و موتور در افزایش سرعت تولید است.

۴. نتیجه‌گیری

با توجه به نتایج به دست آمده از حل مدل می‌توان به اهمیت استفاده از مدل پیامدهای طویل‌تر به‌طوری‌که پیکر‌نگی دستگاه‌های تخصصی قطعات به سیستم‌ها و هم‌چنین مسئله‌ها به سیستم‌ها با هدف کاهش هزینه‌های ناشی از جای‌گزینی قطعات، هزینه‌های ناشی از انجام عمليات ویلی در سیستم‌ها و هزینه‌های ناشی از تغییر نگه‌داری مسئله‌های آن‌ها در سیستم، منجر به افزایش بهره‌وری کل سیستم گردیده و باعث ایجاد تعادل در سیستم می‌شود. یکی از روش‌های این مدل است که در نظر گرفته‌نگه‌نی برای پیکر‌گذاری مسئله‌های آن‌ها و سیستم‌ها تا حد امکان سعی می‌کند که قطعات به صورت کنکای‌واخت‌بری بین مسئله‌ها و سیستم رقیم شوند که این امر موجب افزایش بهره‌وری سیستم می‌شود.

منابع