چکیده

مساهم انتخاب سبد سهام یکی از مهم‌ترین مسائل در حوزه مدیریت مالی است. به‌طوری که در آن به تخصصی سرمایه‌بندی دارای‌های مختلف یا کنترل‌های مختلف سرمایه‌بندی و ریسک برداخته می‌شود. در مقاله حاضر، موضوع انتخاب سبد سهام به‌دست‌آوردن و به‌کارگیری محدودیت‌های تعیین سرمایه و نسبت به سرمایه‌گذار تأثیر و اثر را بر ریسک شرکت می‌گذارد. برای کنترل به‌بازار فاؤد، یک مدل برنامه‌ریزی امکانی چندهدفه برای انتخاب سبد سهام مطرح و حداکثری ریسک مطلوب توزیع داده شده و از دو روش که متفاوت برای تبدیل آن به مدل تک‌هدفه استفاده شده است. نتایج حاصل از بررسی عملکرد مدل بستگی‌دار به انتخاب مارکوویتش و بورس اوراق بهادار به‌هر تأمین می‌دهد که این مدل قادر است با بهینه‌سازی هم‌زمان بازده و ریسک سبد سهام مناسب را با توجه به گرافی‌ها و استراتژی‌های مختلف سرمایه گذاران ارائه دهد.

کلمات کلیدی: سبد سهام، برنامه‌ریزی امکانی، برنامه‌ریزی چندهدفه، بازده، ریسک

1 مقدمه

مساهم انتخاب سبد سهام همواره یکی از موضوعات جذاب و کاربردی در بازارهای مالی بوده است. مفاهیم به‌هم‌سازی سبد سهام و توسعه بخشی از به‌عنوان ابزارهای کارآمد در راستای توسعه بازارهای مالی و کسب به‌کارگیری سرمایه‌گذاران در آمدند. در مقاله انتخاب سبد سهام شرود اشاره ایکسیانی مختلفی از دارایی به‌کارگیری سرمایه‌گذاران در حداکثری ریسک مربوط به انتخاب سبد سهام در نظر گرفته و برای اطمینان حاکم بر آن است. نوسان قیمت سهام یکی از این موارد است که در بازارهای سرمایه‌بندی به‌زیان‌های قابل توجه برای عوامل فعل در آن‌ها منجر شده است. به‌دلیل اینکه فعالیت در بازارهای مالی با عدم اطمینان و ریسک همراه است، انتخاب‌گیری میزان ریسک در سبدی سرمایه‌گذاری برای

محقق تحقیق در عملیات در کاربردیهای آن، سال شاید، شماره سوم (ابزارهای 1384)، صفحه 36 ص ص 36

شاید 1385

تجمعی فرح ۱۸، محمد مهدی فلاح ۱- استادیار، دانشگاه مدیریت، دانشگاه خوائزمی، تهران، ایران
۲- دانشجوی کارشناسی ارشد مدیریت صنعتی، دانشگاه مدیریت و حسابداری، دانشگاه پیام‌ریز، تهران

رسید مقاله: ۷ خرداد ۱۳۹۶
پذیرش مقاله: ۱۳ خرداد ۱۳۹۸

* ظرفیت مقاله:
آدرس الکترونیکی:
farrokh@khu.ac.ir

21
سرماهی گذاران حاصل اهمیت است، به طوری که بررسی و اندازه‌گیری ریسک‌های نامطلوب برای موسمات مالی و
فعالان بازار سرمایه از اهمیت خاصی برخوردار بوده است [1]. نظیر جمله سبد سرمایه‌گذاری که نخستین بار
توسط مارکوویتیس (1952) مطرح شد [2]، پارادایم سازمان‌هایی را به‌سوی نگهداری سبد سهام با بالاترین نرخ بانده
مورد انتظار در سطح معیینی از ریسک وجود آورد. مدل‌های میانگین-واریانس برای مساله انتخاب سبد سهام
که نخستین بار توسط مارکوویتیس پیشنهاد شد، نقش مهمی را در توسعه تئوری انتخاب سبد سهام داشته است.
مارکوویتیس پیشنهاد کرد که سرمایه‌گذاران ریسک و باند را به صورت همزمان در نظر بگیرند و مبانی تخصصی
سرماهی بر فرض سرمایه‌گذاری گوناگون را بر اساس تعامل بین این دو انتخاب کنند [3].

پیش‌تر مدل‌های بهینه‌سازی توسعه یافته با تئوری احتمال هستند. فرص اصلی مدل‌های بهینه‌سازی - واریانس
مارکوویتیس این است که می‌توان حالات آینده بازدهی دارایی را با داده‌های تاریخی مربوط به بازده دارایی به
صورت صحیح متغیر کرد. به‌ویژه اینکه نتیجه احتمال یکی از تکنیک‌های اصلی مورد استفاده در حل تابع
اطمینان در بازه‌های مالی است، رفتار بازارپیش‌بینی مالی اغلب با چنین عامل غیر احتمالی آنها بهره و سریع‌تر
است [4]. در یک موردی، داده‌های تاریخی برای تخمین توزیع احتمال مقدار وجوه ندارد، بای تهیه آنها هزینه
زیادی را خواهد داشت [5]. در واقع، ضعف اساسی مدل مارکوویتیس این است که تخمین دقیقه برای بازده سهام و
واریانس (رسک) آنها در نظر گرفته نشده است. با معرفی تئوری مجموعه‌های فازی توسط لطفی‌زاده [6]، تعدادی از
محققات به این تئیده رسیدند که می‌توان از این تئوری برای مدیریت سبد سهام در نوع دیدگاهی از فضای
تصمیم‌گیری به نام محسّن فازی استفاده کرد. در این زمینه محققات روشن‌های مختلفی را با رویکرد برناوریزی
امکانی برای مطالعه سبد سهام توزعه داده‌اند [7-9]. برناوریزی فازی شامل دو رویکرد برناوریزی انعطاف‌پذیر و
پیوستگی امکانی است. در رویکرد اول با در نظر گرفتن توناد عضویت اتفاق برای توان هدف و محدودیت‌ها
در قابل تاثیر مطلق‌اندیش، مسئله در غلبه یک مسئله ذکر هدف مقدماتی می‌شود. از جمله کاربردهای این رویکرد
در بیشتر سایر مسائل مالی، با توجه به توان امکانی حاصل به هدف است. در رویکرد برناوریزی امکانی محدودیت‌های توان‌های و
محدودیت‌های مسئله در غلبه توان امکانی همچون توان احتمال مدل‌های مذهبی [10]. مثابه با تئوری
سید سرمایه‌گذاری، اهداف حاصل‌کردن یک میانگین نرخ برگشتی، حداقل‌بازی واریانس نامطلوب و حداقل‌کرسای
چولگی را باید در مدل‌های بهینه‌سازی سبد سهام مورد بررسی قرار گیرند. با این حال در بسیاری در طی مدل‌های
امکانی پیشنهادی، با وجود در نظر گرفتن میانگین و ریسک نامطلوب بزرگ‌سی سبد سهام، چولگی سمت راست
باندی در نظر گرفتن نمی‌شود. چولگی سمت راست پژوهش امکان کسب پیش‌بینی بازدهی نسبت به از باندی متوسط را
نشان می‌دهد.

از طرف دیگر، نتایجی برای حل و توسعه مدل مارکوویتیس برای کاربردهای کردن آنها صورت
گرفته است. محدود نگاه دانش تعداد دارایی‌ها در سبد سهام با متغیرهای صفر و یک (محدودیت‌های اصلی [4]) و

1 Flexible programming
2 Possibilistic programming
3 Cardinality constraints

22
تعین حدود پایین و بالا (محدودیت‌های آسان‌تر) بر روی نسبتی از سرمایه‌گذاری

می‌شود از جمله محدودیت‌های کاربردی هستند که معرفی شده‌اند. این موارد ناشی از خواص‌های

سرمایه‌گذاران است که برای کنترل ریسک غیرسمت‌آمیزی باید از این محدودیت‌های دقیق‌تر بهره بگیرند. روشن

است که با توجه به تعداد دارایی‌ها و تولید هزینه‌های اعمال‌های، در نظر گرفتن حداکثر اندازه‌های پایدار

معمولاً، پیچیده‌گی مدیریت، با سیاست‌های مدیریت دارایی مطلوب نیست.

نتایج‌های باتلاقی همراه با شرایط فازی که بر سر سرمایه‌گذاری حاکم است و همچنین وجود گرایش‌ها و

استراتژی‌های مختلف سرمایه‌گذاران در این تحقیق یک مدل ریاضی مبتنی بر برنامه‌ریزی امکان‌برای کنترل

می‌شود. در قسمت ۳ به پرسیبانی و ایده‌ها مدل سیستم سه‌پایه و سپس در قسمت ۳ بعد از نشری مقدمات

مورد نیاز، روبکرد پیشنهادی را ارائه خواهیم کرد. در قسمت ۴ عملکرد روبکرد پیشنهادی مورد تحلیل قرار

می‌گیرد. در نهایت نتیجه‌گیری و پیشنهاد‌ها مطرح می‌شود.

۲ پیشینه تحقیق

اسلام‌ها همراه با تنگ‌نواری برای افزایش در آمد منظم خود از طریق سرمایه‌گذاری مناسب بوده و هستند. هر

فرد پیش از سرمایه‌گذاری باید به دو معیار اساسی توجه کند. نخست اینکه سرمایه‌گذاری انجام شده، پیش‌ترین سود

را پرداخته و دوم اینکه یک‌کلاسیک شده روند پایداری داشته باشند. به عبارتی دیگر، ریسک سرمایه‌گذاری کم‌ترین میزان ممکن باشد. مدل‌هایی که توسط پژوهشگران، یکی پس از دیگری و به‌منظور

انتحاب سیستم معنی‌فی می‌شوند، همگی به‌دلیل برطرف کردن نواقص مدل‌های پیشین و به‌پیش‌تر نتایج حاصل از

آنها همگی و می‌کوشند اهداف منظور سرمایه‌گذاران را به‌پنجره شکل ممکن برآورده کنند[۱۲]. همان‌طور که

پیش‌تر اشاره شد، مسیبال به‌یک‌سانی سید سهام از اولای ۱۹۵۲ با یک‌پیش‌گام مارکوئینی سودی توجه محقق کنار

گرفت. مارکوئینی در مدل خود علاوه بر در نظر گرفتن پایداری سرمایه‌گذاری، به مفهوم ریسک در انتخاب دارایی‌ها

زن توجه کرد. همچنین مارکوئینی نخستین کسی بود که مفهوم کاهش ریسک از طریق ایجاد نرخ انتخاب در سرمایه‌گذاری

را مطرح کرد. در ابتدا مدل انتخاب سید سهام به‌صورت یک دوره‌ای و به‌همان صورتی که در مدل

اولیه مارکوئینی عرضه شده بود مورد استفاده قرار گرفت. اگر در حالی که سرمایه‌گذاری سید سهام خود را

در طول یک افق برناهایی چند دوره‌ای نگه‌داری می‌کنند و این امکان را دارند که از طریق بازارگیری و تعادل

در سرمایه، بازه بسمت تری کسب کنند[۱۲-۱۳].

۱ Threshold constraints
و همکاران [۱۶] از الگوریتم زنجیک برای حل مسائل بهینه‌سازی سبد سهام در مدل‌های میانگین-واریانس، نیمه واریانس و انحراف مطلق استفاده کردند. آنها به این نتیجه رسیدند که سبد سهامی با اندکی کوچکتر کارایی بیشتری در مقایسه با سبد سهام در اندکی کوچکتر بزرگتر خواهند داشت. هاو و لیو [۱۷] بر اساس نظریه مارکوف در مدل میانگین-واریانس، جنگ مدل ساده میانگین-واریانس برای مسایل انتخاب سبد سهام با بانزه سرمایه‌گذاری تصادفی فاصله دادنی. زانگ و همکاران [۱۸] و لیو و همکاران [۱۹] با استفاده از الگوریتم زنجیک و الگوریتم تکاملی هوشمند برای انواع

مدل‌های انتخاب سبد سهام جدید دوره‌ای استفاده کردند.

در زمینه برنامه‌ریزی امکانات، واتادا [۲۰] و لندون و همکاران [۲۱] مساله انتخاب سبد سهام را با استفاده از تئوری تصمیم‌گیری مورد بررسی قرار دادند. تاناکا و گانو [۲۲] دو نوع مدل انتخاب سبد سهام را با استفاده از احتمالات فاصله و توزیع‌های امکانی نمایی پیشنهاد کردند. اینگوچی و ناتوی [۲۳] روش بررسی برنامه‌ریزی امکانی برای مساله انتخاب سبد سهام تحت مجازات‌های تأثیری minmax1 را معرفی کردند. لای و همکاران [۲۴] وانگ و زو [۲۵] و گیو و همکاران [۲۶] در مدل‌های برنامه‌ریزی بزسای تأثیر انتخاب سبد سهام تغییر دادند. این مساله انتخاب سبد سهام را با ضرایب بازهای و فاصله مورد بررسی قرار داد و دو نوع از جواب‌های کارا را معرفی کرد که شامل جواب کارای امکانی به‌صورت جواب خوش‌دسته و جواب کارای امکانی به‌صورت جواب بدبینانه بودند. کارلسون و همکاران [۲۷] با استفاده از تئوری تصمیم‌گیری مورد بررسی قرار دادند. تاناکا و گانو [۲۸] روش بررسی برنامه‌ریزی امکانی برای مساله انتخاب سبد سهام با ضرایب بازه‌های امکانی نمایی و فاصله امکانی نمایی را پیشنهاد کردند. زانگ و همکاران [۲۹] در مدل‌های انتخاب سبد سهام مبنای الگوریتم فوقانی و تحتانی و واریانس‌های امکانی تعیین می‌شود و حد فاصلی آن توسط تجربیات تصمیم‌گیری که مجموعه‌های مشابه و میانگین ریسک از یک مدل میانگین ریسک

نامبولو برای نظر گرفتن چولگی پازه‌های دیگر رابطه سبد سهام استفاده کردند. آنها همچنین مبادله باندی، ریسک گام‌های، و جدولی سبد سهام را به عنوان مدل تجربیات سرمایه‌گذاری استفاده کردند و یک مدل میانگین-واریانس چند دوره‌ای با استفاده از گرفتن دسته‌های تعیین می‌شود. گو و همکاران [۳۰] روش بررسی اکتشاف به‌صورتی تعریف می‌شود. آنها یک مدل میانگین-واریانس به‌جای تحلیل چولگی پازه‌های دیگر رابطه سبد سهام استفاده دادند. گیو و همکاران [۳۱] روش بررسی اکتشاف به‌جای تحلیل چولگی پازه‌های دیگر رابطه سبد سهام استفاده دادند. گیو و همکاران [۳۲] روش بررسی اکتشاف به‌جای تحلیل چولگی پازه‌های دیگر رابطه سبد سهام استفاده دادند. گیو و همکاران [۳۳] روش بررسی اکتشاف به‌جای تحلیل چولگی پازه‌های دیگر رابطه سبد سهام استفاده دادند.

1 Regret
تصادفی برای بررسی بازدهی تصادفی دارایی‌های با اطلاعات می‌باشد استفاده کرد. وی انحراف مطلق متغیر فاژی تصادفی را تعیین و سپس از آن به عنوان شاخص ریسک در مدل‌های بهینه‌سازی سیب سه‌مانتی بر میانگین انحراف مطلق استفاده کرد. لیو ولانگک [31] یک مدل میانگین نیمه واریانس امکان برای انتحاب میانگین بهینه‌سازی دست‌سهم فاژی با در نظر گرفتن هزینه عامل‌ها متغیر و ثابت، محدودیت‌های آستانه سرمایه‌گذاری و حداکثر دسته عامل‌ها

پیشنهاد کرده‌اند.

شرایط سیم و همکاران [۳۲] در پژوهشی برنامه‌ریزی چند هدفه را برای انتحاب سید سهم سه‌مورد بررسی قرار دادند. در آن پژوهش از مدل برنامه‌ریزی توافقي با محدودیت تصادفی برای انتحاب سید سهم استفاده شد. نتایج این پژوهش نشان داد برنامه‌ریزی تصادفی سازگاری بیشتری با خواص‌های مشتری دارد و با سادگی و قابلیت کاربردی یک که دارد، می‌تواند در حل سایر مسائل تصادفی نیز مورد استفاده قرار گیرد. سلیمی فرد و همکاران [۳۳] مدل توسعه‌دهنده میانگین نیمه واریانس مارکوویت‌را در قالب یک مدل برنامه‌ریزی غیرخطی جدیده‌بندی داده‌های کاربردی، حد آستانه، بخش سرمایه‌گذاری، آنتروپی و نیز با در نظر گرفتن هزینه عامل‌های پیشنهاد دادند. برای بررسی کاربردی‌ی مدل پیشنهادی در مساله‌ی بهینه‌سازی سید سهم، با استفاده از اطلاعات قیمت‌ده‌شده در سرمایه‌گذاری برای سرمایه‌گذاری به‌دست آمده‌بود و محدودی [۳۴] به بهینه‌سازی سید سهم در حالت عدم قطعیت با یک مکات روتیک برنامه‌ریزی تصادفی پرداختند و از برنامه‌ریزی توافقي برای‌تک‌هدفه کردن مدل‌نورد استفاده کردند. آن‌ها از اطلاعات مربوط به شرکت‌هایی از بازار تهران برای اعتبارسنجی مدل استفاده کرده‌اند.

۳. روش‌شناسی پژوهش

۳.۱ مقدمات و تعاریف

در روشکرد پیشنهادی، مفاهیم میانگین بازده، امکان کسب بازدهی با‌الاتر از میانگین به‌عنوان ریسک مطلوب و امکان کسب بازدهی پایین‌تر از میانگین به‌عنوان ریسک نامطلوب مربوط به بازده فاژی مورد بررسی قرار می‌گیرد. در قسمت‌های بعد از معرفی برخی از تعاریف مورد نیاز به تشریح مدل پیشنهادی و نحوه حل آن خواهیم پرداخت.

معنی‌ی ۱ عدد فاژی \tilde{A} یک عدد فاژی از نوع \mathbb{LR}، $\tilde{A} = (a, \bar{a}, \alpha, \beta)_\mathbb{LR}$، بوده که دارای تابع عضویت زیر است.

\[
\mu_\tilde{A}(x) = \begin{cases}
L \left(\frac{a - x}{\alpha} \right) & \alpha - a \leq x \leq a \\
1 & \alpha \leq x \leq \bar{a} \\
R \left(\frac{\bar{a} - x}{\beta} \right) & \bar{a} \leq x \leq \bar{a} + \beta
\end{cases}
\]

(۱)
تعريف ۲ فرض کنید \(\tilde{B} = [\tilde{a}, \tilde{b}] \) یک پاز فازی باشد، مسئله حداکثر سازی با تابع هدف بازدهی به صورت زیر است [۲۵]:

\[
\begin{align*}
\text{max } & \tilde{B} \\
\text{s.t. } & \tilde{B} \in \chi
\end{align*}
\]

که معادل مسئله برنامه‌ریزی ریاضی چند هدفه زیر است:

\[
\begin{align*}
\text{max } & \frac{a_i + \tilde{b}}{v} \\
\text{s.t. } & \tilde{B} \in \chi
\end{align*}
\]

مجموعه محدودیت‌هایی است که مقدار متغیر \(\tilde{B} \) پایید در آن محدود شود.

۲-۳ برنامه‌ریزی امکانی

در مسئله انتخاب سیستم سه‌تایی استاندارد، یک سرمایه‌گذار در خصوص نسبتی از کل‌ور بروز که به دارایی \(j \) تخصصی می‌دهد، تصمیم گیری می‌کند. با فرض اینکه (\(x_j \)) توانایی فازی دارایی \(j \) باشد، مقدار‌بندی توانایی فازی یک سبد سرمایه‌گذاری را به صورت زیر نشان می‌دهم:

\[
\tilde{R} = (\sum_j a_j x_j, \sum_j \alpha_j x_j, \sum_j \beta_j x_j)_{LR} = (\tilde{R}(x), \tilde{R}(\alpha(x), \tilde{R}(\beta(x)))_{LR}
\]

متغیر \(\tilde{R} \) طبق اصل گسترش لطفی زاده [۳۶] یک عدد فازی دوست‌ها یا از نوع LR است. در اینصورت، مسئله برنامه‌ریزی خطی امکانی سبد سرمایه‌گذاری به صورت مدل زیر است:

\[
\begin{align*}
\text{max } & \tilde{R} = (\tilde{R}(x), \tilde{R}(\alpha(x), \tilde{R}(\beta(x)))_{LR} \\
\text{s.t. } & \sum_j x_j = 1 \\
& \sum_j z_j = N \\
& z_{j} \leq x_j \leq u_j z_j, \quad j = \ldots, n \\
& z_j \in \{0,1\}, \quad j = \ldots, n
\end{align*}
\]

محدودیت ۷ و ۸ سرمایه‌گذاری بر روی \(N \) دارایی‌ها با در نظر گرفتن حدود بالا و پایین آن‌ها تضمین می‌کند. این محدودیت برای کنترل در نظر گرفته شده است. مقدار \(u_j \) به ترتیب حداکثر و حداقل نسبت سرمایه‌گذاری بر روی دارایی‌ها را نشان می‌دهد. همچنین فرض می‌کنیم شرایط متغیر سازی سبد سهام نسبت سرمایه‌ای است که در هر دارایی سرمایه‌گذاری می‌شود (حدود بالا و پایین) که توسط تصمیم‌گیرنده مشخص می‌شود، روش است این محدودیت‌ها برای تعیین یک سبد به‌سیله حداقل از تهمت نرخ ترخیص بر روی دارایی‌های

۲۶
مختلف برای کنترل ریسک غیرسمت‌ماتیک سبب سرمایه‌گذاری به کار می‌رود. تابع هدف یک تابع نادیق با توسعه امکانی توسعه‌ای است که محتمل ترین مقدار آن بازه \([R(x), \bar{R}(x)]\) و پهنای چپ و راست آن نیز به ترتیب با \(\alpha(x)\) و \(\beta(x)\) مشخص می‌شود.

برای حداکثرسازی تابع هدف باید مقادیر \(\alpha(x)\) و \(\beta(x)\) حداکثر و مقدار \(\bar{R}(x)\) و \(\bar{R}(\bar{x})\) حداکثر و مقدار \(R(x)\) را جایگزین این عملیات، باید با این حال، برای حفظ شکل تابع توسعه دوزندهای LR (برمان و مجدب)، به جای انجام این عملیات، برای

\[
R(x) + \frac{R(x)}{\alpha(x)} - \bar{R}(x) \leq 0
\]

را هم‌زمان حداکثر کرد. همچنین مقدار \(\beta(x)\) را حداکثر و \(\bar{R}(x)\) را حداقل ساخت. این چهار تابع حرکت به سمت راست توسعه امکان دوزنده‌ای را تضمین می‌کند؛ بنابراین مساله کمکی به شکل زیر خواهد بود:

\[
\begin{align*}
\text{max } z_1 &= R(x) \\
\text{max } z_2 &= \frac{R(x) + R(x)}{R(x)} \\
\text{max } z_3 &= \beta(x) \\
\text{min } z_4 &= \alpha(x)
\end{align*}
\]

\[s.t.: constraint \ (6) - (9)\]

مدل چند هدفه خطی قطعی فوق، معادل حداکثرسازی ممکن ترین مقدار بازدهی (که درجه امکان آن برای با یک بوده) است که برای حفظ حالت آن می‌توان از روش‌های تیتری مانند روش ورنر و روش تراپی و حسی استفاده کرد. در همین زمان، پهنای سمت چپ توسعه امکان حداقل می‌شود که به معنی حداقل سازی منطقه‌ی یک (معادل ریسک کسب سود پایین تر) در شکل 1 است. علاوه بر این، پهنای سمت راست توسعه امکان حداکثر می‌شود که به معنی حداقل‌سازی منطقه‌ی سه (معادل امکان کسب سود بالا) است [77].

شکل 1 استراتژی حل

در شکل 1 توسعه امکان \(\bar{R}^*\) بر توجه داده می‌شود. در نتیجه سبد سرمایه‌گذاری، حداکثرسازی میانگین تیتر

برگشته، حداقل‌سازی واریانس نامطلوب و حداکثرسازی جولگی راست اغلب مورد نظر است. در این نتیجه،

\[1 \text{ Inferior}\]
بخصوص بهینه‌سازی و انتخاب سبد بهینه براساس رابطه بازده و میزان ریسک مطلوب و نامطلوب، انجام می‌گردد. در این نظریه نمایندگی‌هایی یک توزیع احتمال است.

۳-۱ مدل چندهدفه
برای این مدل، از روش زیمرمن و روش ترایبی و حسین استفاده شده است. ابتدا بايد راه‌حل‌های ایبده آل مثبت (PIS) و راه‌حل‌های ایبده آل منفی (NIS) توانای هدف فوق را به‌دست آوریم:

\[z_{PIS}^i = \max_{x \in X \mathbb{R}} R(x), \quad z_{NIS}^i = \min_{x \in X \mathbb{R}} R(x), \]
\[z_{PIS}^i = \max_{x \in X \mathbb{R}} \left[\frac{R(x) + R(x)}{\lambda} \right], \quad z_{NIS}^i = \min_{x \in X \mathbb{R}} \left[\frac{R(x) + R(x)}{\lambda} \right], \]
\[z_{PIS}^i = \max_{x \in X \mathbb{R}} \beta(x), \quad z_{NIS}^i = \min_{x \in X \mathbb{R}} \beta(x), \]
\[z_{PIS}^i = \min_{x \in X \mathbb{R}} \alpha(x), \quad z_{NIS}^i = \max_{x \in X \mathbb{R}} \alpha(x), \]

تابع عضویت خطی این توابع را می‌توان محاسبه کرد که نمودار آنها در شکل ۲ ترسیم شده است:

\[\mu_{z_i} = \begin{cases} 1 & Z_i > Z_{i_{NIS}} \\ \frac{Z_i - Z_{NIS}^PIS}{Z_{PIS}^i - Z_{NIS}^i} & Z_{PIS}^i \leq Z_i \leq Z_{i_{NIS}} \\ 0 & Z_i < Z_{i_{NIS}} \end{cases} \] (12)

\[\mu_{z_i} = \begin{cases} 1 & Z_i < Z_{i_{PIS}} \\ \frac{Z_{i_{NIS}} - Z_i}{Z_{NIS}^i - Z_{PIS}^i} & Z_{PIS}^i \leq Z_i \leq Z_{i_{NIS}} \\ 0 & Z_i > Z_{i_{NIS}} \end{cases} \] (13)

۱. Upside risk
۲. Downside risk
روش است که تابع عضویت توابع هدف ۲ و ۳ (۳) مشابه تابع عضویت تابع هدف اول (۲) است، در زیر دو روش متفاوت برای حل مسأله چند هدف مسأله انتخاب سبد سهام ارایه می‌شود. روش ورنر [۴۹] برآ مدل یک نهایی برای تعداد ۲ تک هدف مسأله انتخاب سبد سهام به صورت زیر خواهد بود:

\[
\text{max } \gamma \lambda + (1-\gamma) \sum_{i} \lambda_{i}^j
\]

\[
\text{s.t. } \mu_i \geq \lambda_i + \lambda_j, \quad i=1,2,3
\]

\[
\text{constraint } s(\gamma) - (9), \quad \lambda, \lambda_j \text{ and } \gamma \in [0,1]
\]

متغیر λ_{i} اختلاف میان سطح اقتراح هر تابع هدف و حداکثر سطح اقتراح توابع هدف (۳) است. γ ضریب بین را نشان می‌دهد که حداکثر سطح اقتراح اهداف و دیده مصالحه میان اهداف را کنترل می‌کند.

روش توپی و حسینی [۵۰] برای حل مشکل ناکارایی و رسیدن به جواب مصالحه‌ای بهتر، تراپی و حسینی یک روش جدید به صورت زیر توصیه داده‌اند:

\[
\text{max } \gamma \lambda + (1-\gamma) \sum_{i} \mu_{i}(x)
\]

\[
\text{s.t. } \mu_{i}(x) \geq \lambda, \quad i=1,2,3,4
\]

\[
\text{constraint } s(\gamma) - (9), \quad \lambda \text{ and } \gamma \in [0,1]
\]
مقدار بهینه متغیر \(\lambda_y = \min \{ \mu_y(x) \} \), حداکثر دیره افتقا توان دفا نشان می‌دهد و تابع تجمع این رویکرد نیز در جستجوی یک مقدار مصالحه‌ای بین عملکر \(\min \) و عملکر جمع موزون بوده که با تغییر مقدار \(\gamma \) انجام می‌شود.

4 یافته‌های بروهن

برای ارزیابی عملکرد رویکرد پیشنهادی، از مجموعه داده‌هایی که توسط مارکوپنیز [4] معرفی شده است و مجموعه داده‌های بورس اوراق بهادار تهران استفاده می‌کنیم. فرض کنید سرمایه‌گذاری قدح دارد لر تو خود را بین ۹ دارایی از داده‌های تاریخی مارکوپنیز تخصیص دهد که بازدهی سالانه آنها با استفاده از رابطه زیر محاسبه می‌شود:

\[r_{ij} = (p_{(i+1)} - d_{ij} - p_{ij}) / p_{ij} \]

در سال \(k \) در سال \(i \) سود این دارایی در سال \(k \) است. این داده مربوط به سال‌های ۱۹۳۷ تا ۱۹۵۴ است. جدول ۱ خلاصه آماری این داده را نشان می‌دهد.

جدول ۱. آمار بازدهی سالانه دارایی‌ها (۱۹۳۴-۱۹۵۷) مربوط به داده‌های تاریخی مارکوپنیز

| دارایی | میانگین | انحراف | استاندارد | مقدارچه | شماره شن | نقطه منجم | صدک تود و | صدک نود و | صدک ششم | صدک چهل | صدک ۱۸۴ | صدک ۱۷۵ | صدک ۱۱۸ | صدک ۱۱۷ | رنگ
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>۰.۶۶</td>
<td>۰.۶۸</td>
<td>۰.۶۸۵</td>
<td>۰.۷۱</td>
<td>۰/۷۷</td>
<td>R1</td>
</tr>
<tr>
<td>R6</td>
<td>۰.۸۷</td>
<td>۰.۸۹</td>
<td>۰.۸۶۲</td>
<td>۰.۸۶۲</td>
<td>۰/۸۶۲</td>
<td>R6</td>
</tr>
<tr>
<td>R7</td>
<td>۰.۹۰</td>
<td>۰.۹۲</td>
<td>۰.۹۱۷</td>
<td>۰.۹۱۹</td>
<td>۰/۹۱۹</td>
<td>R7</td>
</tr>
<tr>
<td>R8</td>
<td>۰.۹۳</td>
<td>۰.۹۵</td>
<td>۰.۹۸۶</td>
<td>۰.۹۸۶</td>
<td>۰/۹۸۶</td>
<td>R8</td>
</tr>
</tbody>
</table>

در مدل‌های فازی، این مشاهدات برای داده‌‌های صورت نمود، در نظر گرفته می‌شوند؛ بنابراین از صدک‌های نمودار برای تقریب نقطه کانونی درست بازدهی فازی جعبه و راست بازدهی‌های دیگر نشان‌داده‌های این دارایی‌ها استفاده \(P_{ij} - P_{ij} \) و \(P_{ij} - P_{ij} \) به صورت \(R_{ij} \) به دست می‌آید. \(\alpha \) و \(\beta \) به ترتیب به عنوان

\[L(r) = \frac{r - a_i - \alpha_j}{\alpha_j} \text{ for } r \in [a_i - \alpha_j, a_j] \]

\[R(r) = \frac{a_i + \beta_j - r}{\beta_j} \text{ for } r \in [a_i, a_i + \beta_j] \]

با سلیقه‌ی جمعیت جعبه و راست بازده فازی مربوط به استفاده از تعیین ۱ به صورت زیر خواهد بود:
مسایل بهینه‌سازی تک هدفه با استفاده از ترم‌افزار لینگو ۱۵ به شرکت تولید بخشی و ضایعات جیران مختلف حل شد. جدول ۲ سبد سه‌جام را نشان می‌دهد که با استفاده از سطوح مختلف ضایعات جیران برای مدل‌های سبد سهام تک هدفه مبتنی بر روش ویرتز و روش ترایب و حسنه به دست آمده است.

<table>
<thead>
<tr>
<th>یک‌سانتیمتر</th>
<th>زانوج</th>
<th>ظرفیت</th>
<th>بهره‌وری</th>
<th>استاندارد تغییرات</th>
<th>ارزش قابل اطمینان</th>
<th>ارزش قابل اطمینان</th>
<th>ارزش قابل اطمینان</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱ ۱۴۳۳۳۹</td>
<td>۴ ۴۲۲۲۲۲</td>
<td>۶ ۶۲۲۲۲۲</td>
<td>۸ ۸۴۲۲۲۲</td>
<td>۱۰ ۱۰۴۲۲۲</td>
<td>۱۲ ۱۲۴۲۲۲</td>
<td>۱۴ ۱۴۴۲۲۲</td>
<td>۱۶ ۱۶۴۲۲۲</td>
</tr>
<tr>
<td>۲ ۲۱۴۳۳۹</td>
<td>۴ ۴۲۲۲۲۲</td>
<td>۶ ۶۲۲۲۲۲</td>
<td>۸ ۸۴۲۲۲۲</td>
<td>۱۰ ۱۰۴۲۲۲</td>
<td>۱۲ ۱۲۴۲۲۲</td>
<td>۱۴ ۱۴۴۲۲۲</td>
<td>۱۶ ۱۶۴۲۲۲</td>
</tr>
<tr>
<td>۳ ۳۱۴۳۳۹</td>
<td>۴ ۴۲۲۲۲۲</td>
<td>۶ ۶۲۲۲۲۲</td>
<td>۸ ۸۴۲۲۲۲</td>
<td>۱۰ ۱۰۴۲۲۲</td>
<td>۱۲ ۱۲۴۲۲۲</td>
<td>۱۴ ۱۴۴۲۲۲</td>
<td>۱۶ ۱۶۴۲۲۲</td>
</tr>
<tr>
<td>۴ ۴۱۴۳۳۹</td>
<td>۴ ۴۲۲۲۲۲</td>
<td>۶ ۶۲۲۲۲۲</td>
<td>۸ ۸۴۲۲۲۲</td>
<td>۱۰ ۱۰۴۲۲۲</td>
<td>۱۲ ۱۲۴۲۲۲</td>
<td>۱۴ ۱۴۴۲۲۲</td>
<td>۱۶ ۱۶۴۲۲۲</td>
</tr>
</tbody>
</table>

از جدول ۲ مشاهده کنید که مقادیر بازده فاصله کننده در دو روش در ضایعات جیران (۲، ۱۰، ۹/۸، ۸) یکسان هستند. برای ضایعات جیران (۶) نیز بازده فاصله دو روش اختلاف معنی‌داری با هم ندارند. با این حال، بازده فاصله روش ویرتز برای ضایعات جیران (۴) با بازده فاصله روش ترایب و حسنه برای ضایعات جیران (۱۰) یکسان است. سرمایه‌گذاران با توجه به نتایج حلق دو روش برای مقادیر مختلف ضایعات جیران، با یکی از دو مقادیر بازده فاصله زیر را که در شکل ۳ ترسیم شده است، انتخاب کنند.

\[
\bar{R}_1 = (- / ۱۴۳۳۳۹ / ۱۴۳۳۳۹ / ۱۴۳۳۳۹ / ۱۴۳۳۳۹ / ۱۴۳۳۳۹ / ۱۴۳۳۳۹ / ۱۴۳۳۳۹ / ۱۴۳۳۳۹)
\]

شکل ۳ بازده فاصله حاصل از حلق مدل سبد سرمایه‌گذاری

برای تصمیم‌گیری برای انتخاب بازده فاصله مناسب باید به سطح ریسک گسترده سرمایه‌گذاران توجه کرد. بر این اساس، برای سرمایه‌گذاران ریسک گسترده باید به بازده فاصله ۱۴۳۳۳۹ و برای سرمایه‌گذاران ریسک پذیر با توجه به امکان
کسب سود بالاتر بازده فاصله یافته \(\bar{R} \) برای انتخاب

\[\bar{R} = \frac{\sum_{i=1}^{n} R_i}{n} \]

کسب می‌کند در میانه‌بندی سرمایه‌گذاری که سبد سهام مربوط به بازدهی \(\bar{R} \) در انتخاب می‌کند، به راحتی امکان کسب

متوسط بازدهی و بازدهی بالاتر از میانگین کمتر، امکان اینکه با بازدهی نامطلوب بیشتری مواجه شوند کمتر

است. در مقابل، سرمایه‌گذاری که سبد سهام مربوط به بازدهی \(\bar{R} \) در انتخاب می‌کند، می‌تواند از امکان کسب

بازدهی بالاتری برخوردار باشد.

حال مثالی را بر روی تعداد و نسبت مختلفی بر روی دارایی‌هایی که می‌توان بر روی آن‌ها سرمایه‌گذاری کرد در

نظر می‌گیریم تا استراتژی‌های مختلف سرمایه‌گذاری را مورد بررسی قرار دهیم. بر این اساس، بازده فاصله سید

سرمایه‌گذاری برای تعداد مختلف دارایی‌هایی که بر روی آن‌ها سرمایه‌گذاری می‌شود با استفاده از روش‌کرده برایی

و حسین مستحکم و در جدول 3 آورده شده است.

جدول ۳. بازده فاصله سرمایه‌گذاری استراتژی‌های مختلف مربوط به داده‌های مارکزی

<table>
<thead>
<tr>
<th>بدون محدودیت</th>
<th>(l_1 = 1/0.5), (l_2 = 1/0.5), (u_1 = 1/0.5), (u_2 = 1/0.25), (u_3 = 1/0.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R(x))</td>
<td>(\bar{R}(x))</td>
</tr>
<tr>
<td>0.05</td>
<td>0.096</td>
</tr>
<tr>
<td>0.07</td>
<td>0.089</td>
</tr>
<tr>
<td>0.09</td>
<td>0.083</td>
</tr>
<tr>
<td>0.11</td>
<td>0.076</td>
</tr>
<tr>
<td>0.13</td>
<td>0.071</td>
</tr>
<tr>
<td>0.15</td>
<td>0.067</td>
</tr>
<tr>
<td>0.17</td>
<td>0.063</td>
</tr>
<tr>
<td>0.19</td>
<td>0.059</td>
</tr>
<tr>
<td>0.21</td>
<td>0.055</td>
</tr>
</tbody>
</table>

مشاهده می‌شود که شروع تنویع بخشی بیشتر به صورت محدودیت، سبد سهام بر ریسک‌تری را با مدت بازدهی بالاتری به همراه دارد. روش است که سبدهای با تعداد دارایی (۸-۲) با محدودیت جدید سرمایه‌گذاری بر

سبدهای با تعداد دارایی (۳-۲) بدون محدودیت حدود سرمایه‌گذاری با توجه به پهنای راست بزرگتر (امکان

کسب سود بیشتر از میانگین) و پهنای سمت چپ و میانگین باز برای برتری دارد؛ در واقع، با اعمال محدودیت

بر روی نسبت‌های سرمایه‌گذاری، امکان کسب بازدهی بالاتر بدون تحمیل‌ریسک اضافه برای این تعداد دارایی

فراهم می‌شود. سرمایه‌گذاران با توجه به نتایج حاصل، برای یکی از دو متفاوت بازده فاصله زیر را که در شکل ۴

ترسیم شده است انتخاب کنند.

\[\bar{R}_i = (0.050, 0.060, 0.070, 0.080) \]
برای انتخاب سهم در سال های ۱۳۸۵ نیز تحلیل و نتایج آن در جدول ۴ آورده شده است.

<table>
<thead>
<tr>
<th>جدول ۴</th>
<th>سهم بهره‌بردارهای استراتژی معادل مربوط به داده‌های بورس تهران</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma = \sqrt{2}$</td>
<td>$l_j = /10, s_j = /25$</td>
</tr>
<tr>
<td>$R(x)$</td>
<td>$\bar{R}(x)$</td>
</tr>
<tr>
<td>Infeasible</td>
<td>$/111$</td>
</tr>
<tr>
<td></td>
<td>$/06$</td>
</tr>
<tr>
<td></td>
<td>$/86$</td>
</tr>
<tr>
<td></td>
<td>$/46$</td>
</tr>
<tr>
<td></td>
<td>$/49$</td>
</tr>
<tr>
<td></td>
<td>$/46$</td>
</tr>
<tr>
<td></td>
<td>$/96$</td>
</tr>
<tr>
<td></td>
<td>$/96$</td>
</tr>
<tr>
<td></td>
<td>$/96$</td>
</tr>
<tr>
<td></td>
<td>$/96$</td>
</tr>
</tbody>
</table>
نتایج حل مدل نشان می‌دهد که با افزایش تعداد دارایی‌ها به‌ویژه چپ و راست بزه‌ها فازی به ترتیب افزایش و کاهش می‌یابد. در واقع، با افزایش تعداد دارایی‌ها مقدار واریانس نامطلوب (امکان کسب بزه‌های بایین‌تر) افزایش و مقدار چولگی (امکان کسب بزه‌های بیشتر از میانگین) کاهش می‌یابد. این در حالت است که با افزایش تعداد دارایی‌ها میانگین بزه‌های فازی تفاوت معنی‌داری بی‌نیم کند. در نتیجه برابر کسب حداکثر بزه‌های گرهی از ریسک بزه‌های بایین یا به دست آوردن بزه‌های دارایی در حدود ۴ و ۵ سهم برای سرمایه‌گذاری انتخاب کرد. در واقع، با انتخاب ۴ یا ۵ دارایی از میان ۳۰ سهم با سطح بزه‌های و ریسک مطلوب نسبت به دیگر سهم‌ها، می‌توان سیده مناسب برای سرمایه‌گذاری در اختیار داشته. همچنین مشاهده می‌شود که اعمال محدوده ۲۵ درصد به جای ۲۰ درصد بر روی حداکثر تناسب که می‌توان بر روی هر یک از دارایی‌ها سرمایه‌گذاری کرد، امکان کسب بزه‌های بیشتر و ریسک کمتر فراهم می‌شود. براساس نتایج این تحقیق، سرمایه‌گذاری می‌تواند با در نظر گرفتن سطح ریسک پذیری خود به انتخاب سید مناسب پردازند. در واقع، سرمایه‌گذاران با انتخاب یک تعداد و درصد بهبودی از میان سهم شرکت‌های مختلف پس از ورود به هدیان تهران می‌توانند در عین کسب بزه‌های قابل قبول، ریسک سید سهم خود را نیز مدیریت کنند.

5 نتیجه‌گیری و پیشنهادها

چالش‌های در مدل‌سازی ریاضی مساله انتخاب سید سهم به‌عنوان یکی از مسائل جذاب در زمینه مدیریت سرمایه‌گذاری، کنترل بزه‌ها و ریسک سید سهم در فضای عدم اطمینان حاکم بر آن است. در مدل برنامه‌ریزی سید سهم فازی پیشنهاد، عدم اطمینان بازدهی دارایی‌های سید سهم با استفاده از اعداد فازی بررسی می‌شود؛ اهداف موسط بزه‌های، ریسک کسب سود نامطلوب و امکان کسب سود بالاتر از میانگین با کمک دو روش‌کرد برنامه‌ریزی فازی بهبود می‌شود. این مدل مطابق با توری سید سرمایه‌گذاری است که اهداف حداکثری میانگین ترکیبی چولگی، حداقل سرمایه‌گذاری واریانس نامطلوب و حداکثری چولگی راسترا مورد بررسی قرار می‌دهد. در مدل پیشنهادی برخلاف مدل‌های امکانی دیگر که در ادیبیت تحصیله بی‌آن اشتهار شد، چولگی بی نیز جزئی به ویژه یک هدف خصوصی بهبود می‌شود. در این مدل، در مورد استراتژی بهبود سرمایه‌گذاری برای تشکیل سید سهم مناسب با در نظر گرفتن توانان بین حداکثری‌ای بزه‌های و حداقل سرمایه ریسک سرمایه‌گذاری
با توجه به پژوهش فارسی تصمیم‌گیری می‌شود. محدودیت در انتخاب تعداد سهام و محدودیت برای حد بالا و پایین نسبت هر سهم در سبد سرمایه‌گذاری از محدودیت‌های کاربردی مدل هستند که برای کنترل ریسک غیرسیستماتیک به مدل اضافه شده‌اند. نتایج حاصل مدل نشان می‌دهد که این مدل قادر است با انتخاب مقدار مناسب برای نسبت هر سهم، تعداد سهام موجود در سبد و ضریب جبران، سبد سهام مناسب را به سرمایه‌گذاران ارائه دهد.

در تحقیقات آنی می‌توان مدل پیشنهادی را پیاده‌گذاری و چند دوره‌ای سبد سهام مورد استفاده و بررسی قرار داد. با توجه به وجود تحقیقات کم در حوزه برنامه‌ریزی فازی در این زمینه، می‌توان از دیگر رویکردهای برنامه‌ریزی فازی برای برنامه‌ریزی رضایی سبد سهام استفاده کرد. همچنین رویکرد برنامه‌ریزی استوار از دیگر روش‌های بهینه‌سازی برآورد و ریسک است که می‌تواند مورد توجه قرار گیرد.

منابع